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Abstract

Time Series Clustering with Water Temperature Data

by Roman BÖGLI

This thesis studies three different approaches to cluster time series data using the un-
supervised pattern recognition method called hierarchical clustering. The underlying
data constitute long-term water temperature measurements of several Swiss water bod-
ies and originates from metering stations which are managed by the Federal Office for
the Environment in Switzerland. The goal is to group these stations according to the
resemblance of their hydrologic temperature curve over a period of ten years with a
ten-minute sampling rate of detail. Stations that exhibit very similar short-term as well
as long-term temperature behaviour and evolution over time should be grouped into
the same clusters. These clusterings should provide a better understanding of the data
heterogeneity received from the various metering stations in Switzerland and support
future decisions regarding the integration of new stations.

The first part of this work addresses the characteristics of time series data and surveys
the field of pattern discovery techniques. The procedure of hierarchical clustering is
explained in detail as it is the chosen technique applied for the cluster analysis of this
thesis. Furthermore, four internal cluster validity indexes used to assess the quality of a
cluster composition are elaborated.

The main part addresses the applied distance measuring strategies and assesses the
quality of the received clustering results. Defining the level of similarity between two
data objects is a fundamental concept in pattern recognition disciplines. This thesis
elaborates the two shape-based strategies Pairwise Distance and Dynamic Time Warping
and the feature-based strategy Discrete Wavelet Transformation. The cluster analyses
are generated with different data aggregation levels and linkage methods. Finally, the
various clustering approaches are challenged based on a forecast deviation analysis. This
facilitates conclusions about the quality of the various cluster compositions in the form of
quantifiable measures.

Keywords: Hydrology, Water Temperatures, Hierarchical Clustering, Time Series



ii

Declaration of Authorship

I, Roman BÖGLI, the undersigned declare that all material presented in this paper is my
own work or fully and specifically acknowledged wherever adapted from other sources. I
understand that if at any time it is shown that I have significantly misrepresented material
presented here, any degree or credits awarded to me on the basis of that material may be
revoked. I declare that all statements and information contained herein are true, correct
and accurate to the best of my knowledge and belief. This paper or part of it have not
been published to date. It has thus not been made available to other interested parties or
examination boards.

Signed:

Date:



iii

Foreword

This thesis represents the final work to receive the Bachelor of Science in Business Infor-
mation Technology from the School of Business at University of Applied Sciences and
Arts Northwestern Switzerland (FHNW). During the course of this part-time study pro-
gram over four years, I encountered a great variety of inter-connected subjects regarding
information technology, economics, and business management. These learnings and the
concurrently collected experiences on my working place as software developer provided
a great balance and allowed me to deepen my knowledge in various disciplines.

The choice for this thesis was mainly driven by my search for programmable tasks that
allow to produce something with a hands-on methodology. Preceding this paper was the
creation of a Python library used to not only conduct the various cluster analyses at free
level of parametrization but also to visualize them. The source code of this library was
handed over to the Bern University of Applied Sciences which is the contractor of the
Hydrology Division at the Federal Office for the Environment regarding this underlying
project. The major problem to be solved at the beginning originated from the large amount
of data to be processed. Since pattern analyses are rich of parametrization possibilities,
finding superior models usually require lots of runs with the same data basis. Therefore,
it is of great importance to keep the calculation times as low as possible. I could solve
this issue successfully thanks to various code optimization measures. The library will be
reused to conduct the same cluster analyses that are presented in this thesis on further
data sets of equal size.

I would like to thank Dr. Vidushi Christina Bigler for her professional supervision and
great teaching during the course of this thesis. It was a great pleasure to work alongside
her and the team from the Institute for Optimisation and Data Analysis at Bern University
of Applied Sciences.

Moreover, I would like to thank Dr. Thilo Herold and Dr. Adrian Jakob from the Hydrology
Division at the Federal Office for the Environment for the data delivery and the support
in domain specific questions.

In addition, I would like to thank Stefan Rey for introducing me to the world of program-
ming a few years ago. The gained experiences working alongside him were decisive to
enrol in this study program.

Finally, I would like to thank my family and my beloved partner for their support of all
kinds during the course of writing the thesis.

https://www.fhnw.ch/en/about-fhnw/schools/business
https://www.fhnw.ch/en/about-fhnw/schools/business
https://www.bfh.ch/en/
https://www.bafu.admin.ch/bafu/en/home/office/divisions-sections/hydrology-division.html
https://www.bfh.ch/en/research/research-areas/institute-optimisation-data-analysis-ioda/
https://www.bfh.ch/en/
https://www.bfh.ch/en/
https://www.bafu.admin.ch/bafu/en/home/office/divisions-sections/hydrology-division.html
https://www.bafu.admin.ch/bafu/en/home/office/divisions-sections/hydrology-division.html


iv

Contents

1 Introduction 1
1.1 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Time Series 5
2.1 Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Clustering 10
3.1 Pattern Recognition Families . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Cluster Validity Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Calinski-Harabasz Index . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Davies-Bouldin Index . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Dunn Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Silhouette Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Distances for Time Series 21
4.1 Pairwise Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Discrete Wavelet Transformation . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 27
5.1 Cluster Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Approach Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Discussion 35

A Metering Stations 44

B Cluster Quality Assessment 50



1

1 Introduction

The Federal Office for the Environment (FOEN)1 analyses several environmental aspects
of Switzerland. The Hydrology Division focuses on water bodies such as lakes, rivers, and
rills. The monitoring of water temperatures over long time periods belongs to one of the
most important metrics as many environmental aspects rely on it. This accurate long-term
data collection forms one of the key responsibilities of the hydrology division as it allows
to conduct research on subjects such as rising water temperatures.

Since Switzerland counts numerous water bodies in various sizes, it requires a large
amount of metering stations in order to capture insights from all different areas. At the
moment, the FOEN maintains approximately 80 metering stations, of which 60 serve as
a data basis for this thesis. The locations of these 60 metering stations are shown in the
appendix in Figure A.1 and listed with additional information in Table A.1.

All stations record water temperature, discharge, and level at its individual water body
location. The sampling frequency is consistently regulated at a ten minutes interval.
Although the initiation date of monitoring varies between 1971 and 2015 as more stations
were installed over time, concise water data is available over several decades. Data sets
that index a value of a metric over time are commonly referred to as time series.

Besides the federal metering stations, the cantons of Switzerland maintain more than 700
additional stations. As is often the case in Switzerland, measurement policies vary in the
different Cantons and any data mining technique will need to account for these deviations.
Another difference concerns the locations of the stations. While federal stations mainly
cover medium to large water bodies, the cantonal stations measure data alongside rather
small to tiny waters.

Since the integration of a cantonal metering station into the federal monitoring network is
connected to costs of several types (administration, labour, expenses), a wise prioritization
is of interest. Cantonal stations, which enhance the diversity of the federal monitoring
network and hence bear greater added value, should be integrated with higher priority.
In order to create such a prioritization, the FOEN launched a project in cooperation with
the Bern University of Applied Sciences2 with the goal of grouping metering stations
according to their similarity between each other. Besides new holistic insight regarding the
existent data, it will facilitate the detection of cantonal stations which diversify the federal
network the most. This thesis contributes to this project by performing and analysing such
groupings.

1Bundesamt für Umwelt (BAFU)
2Berner Fachhochschule (BFH)
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1.1 Project Description

This section outlines the major three parts of the named project regarding the forthcoming
integration of cantonal metering stations into the federal network.

In the first part, the data from the cantonal metering stations is undertaken a quality
assessment test. Since the metering strategies of the cantons may deviate from the federal
one, it is important to analyse the existing data statistically and contextually. The received
insights will be documented as they may serve as explanatory factors for consecutive
analysis results.

The second and main part of the project focuses on the grouping of stations. A pattern
recognition methodology is used called clustering. In order to conduct a cluster analysis of
a given set of data objects (e.g. metering stations), each object must be described using a
set of features. In statistical vocabulary, these features are also referred to as predictors and
the process of finding such is also known as feature engineering. There exist numerous ways
to derive predictors from data objects. Therefore, this project pursues three-stages feature
engineering approach. In the first stage, the data objects will be described using simple
statistical metrics such as mean, standard deviation, extreme values, and correlations. In a
second stage, predictors are engineered by comparing and modelling the time variation
curves (e.g. hydrographs). The third and last stage focuses on long-term trends using
regression models. After each feature engineering stage, cluster analyses are conducted,
and the resulting cluster compositions are assessed in quality.

The project’s third part concerns the visualization and documentation of the elaborated
work from the previous parts. As this project is publicly funded, the final results will be
published alongside executive explanations in order to facilitate broad understanding.

1.2 Contribution

This section declares the aspects of the previously described project to which this thesis
contributes to. As suggested by this document’s title, the focus lies on the actual cluster
analyses of water temperature data. Preliminary to this, three different methods to
determine the similarity between two time series are elaborated. These methods are
referred to as distance measuring strategies.

The first method includes the rather trivial approach of pairwise distances (PDIST) between
two time series. The way this works is identical to the task of determining the distance
between two points in a two-dimensional vector room. What makes time series more
special, however, is the fact that each sampling moment represents one dimension. It
results that this distance determination happens in a multi-dimensional vector room.

As a second method, the Dynamic Time Warping (DTW) algorithm is applied. This approach
represents a prominent technique often encountered in time series analysis. The reason for
this lies in the fact that DTW allows considering non-linear time lags in the comparison
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process of two signals that are indexed over time. As a consequence, two signals that
share nearly identical shape, but express non-linear time lags will be declared as more
similar than they would by the PDIST approach for instance.

The third method pursues the approach of extracting the most prominent components of
a time series using Discrete Wavelet Transformation (DWT). Generally speaking, the water
temperature data indexed over time can be handled as a signal consisting of multiple
different sub-waves. DWT allows decomposing this signal into its constituent parts which
eventually can be used to compare signals with each other. In particular, the 100 most
effective coefficients will be used as features in order to describe a station, respectively the
time series that it produces.

In order to perform the actual grouping of metering stations, hierarchical clustering with
different linkage methods is used. The obtained cluster compositions are evaluated by
means of different cluster quality assessment techniques. The essential goal of this thesis
is to identify which distance measuring strategy and clustering parametrization lead to
superior results. The ground truth, however, is unknown which is why it is hardly possible
to claim a result as the best result.

1.3 Motivation

This section aims to demonstrate the virtue of cluster analyses and its resulting insights
by means of an example drawn from the economic sphere. Roelofsen (2018) examined
several different approaches to cluster public companies according to the behaviour of
their share value traded on the stock market. Figure 1.1 shows the result of re-enacting
this undertaking using the Standard & Poor’s 500 (also known as S&P 500) large-capital
companies traded on American stock exchanges.

From a technical point of view, share prices do not differ from water temperature data.
Both data sets exhibit a metric value indexed over time and thus can be managed as time

FIGURE 1.1: Clustering of S&P 500 Companies.
The cluster analysis disentangles the time variation curves of 500 companies’ share prices into 20

clusters. (Image by V. Bigler)
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series. However, it is recommended to normalize stock prices before any further treatment
since the value domains may vary significantly.

Once the clustering is performed, the emerged groups embracing different disjoint sets
of stocks can be investigated. A first insight is the revelation of the major curve shapes
which are present in the underlying data set. Consequently, individual companies that
exhibit a declining, increasing, or swaying trend in their share index can be indicated. This
allows, for instance, to align an investment strategy on less prominent alternatives as a
cluster’s leading company. Since they all share resembling stock market developments,
such a strategy is likely to result in a resembling return on investment as well. Also, a
very diverse investment strategy can be established by embracing stocks from the most
distinctive clusters.

The rest of this thesis is structured as follows. Chapter 2 describes the most important
time series characteristics as well as common analysis techniques. In Chapter 3, clustering
in general and hierarchical clustering specifically is explained in order to facilitate the
understanding of the successive chapters. The concrete strategies applied in this thesis
to define the disparities among the stations are documented in Chapter 4. Chapter 5
summarizes and interpreters the received results. Finally, the most important insights of
this thesis are concluded and discussed in Chapter 6.
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2 Time Series

In this Chapter, some important characteristics of time series are presented. Although
there are disciplines in which the understanding of these properties is more relevant
compared to cluster analyses (e.g. time series forecasting), knowing them provides a better
understanding of the underlying data.

When comparing two different time series with each other, the question of dependency
should be addressed as statistical models usually assume complete independence among
the analysed data objects. This dependency relationship must be addressed when compar-
ing two different time series. In terms of water temperature data, this is not truly the case.
As an example, the water temperatures measured close to a spring located in an area with
a high degree of glaciation influence the temperatures measured at the same water body
some kilometres downstream in a less icy area. This dependency relation, however, does
not apply in the opposite direction. To illustrate these dependencies, for instance, the set
of metering stations could be represented as a directed graph where edges represent the
dependency, weighted by the distance among the stations. All the remaining properties
presented in this chapter concern the individual time series and can be assessed with no
references to others.

Most time series represent highly autocorrelated data. Autocorrelation describes the degree
to which observations over time correlate to itself and thus represents an individual mea-
sure per time series (Brownlee, 2017). Looking at water temperature data, for instance, the
correlation originates from the fact that the temperature measured at time ti is influenced
by the previous measurement at time ti−1. It is rather obvious that the temperature values
measured in the present and in the close future (e.g. ten minutes later) will share great
similarity and therefore are subject to autocorrelation. However, there are exceptions
where this is not the case. Data representing the amount of withdrawn money from a cash
dispenser over time may serve as an example for a type of time series which is subject
to low correlation. Two different time series can also evidence correlation. For example,
almost all water bodies in the northern hemisphere show some correlation.

Time series can be decomposed into the three components trend, seasonality, and residuals.
Some definitions also include level as component which represents the mean value of the
entire time series (Brownlee, 2017, p. 11). It must be said time series may not exhibit all
these components. The changing level over time is considered as trend and recurring
behaviour is represented as seasonality. The latter is not to be confused with cyclic
behaviour which describes rises and falls at variable frequencies as they often occur
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FIGURE 2.1: Time Series Decomposition
Decomposition of the water temperatures measured at station "Reuss - Mellingen" (ID: 2018) into

trend, seasonality, and residuals (noise) over a period from 1971 to 2018.

in economic metrics (Hyndman & Athanasopoulos, 2018). The remaining information
classifies as residuals which is commonly referred to as noise.

For decomposing a time series into these components, either an additive or multiplicative
method can be used (Pal & Prakash, 2017). Figure 2.1 shows an additive decomposition
which is defined as a function y(t) = Tt + St + Rt, whereas the temperature at time t is the
sum of the components mentioned, namely trend (T), seasonality (S), and residuals (R).
Level, on the other hand, is excluded in this equation as one can argue it is already encoded
in the trend.

Another method to disaggregate time series is called multiplicative decomposition and
formulates y(t) as product of [Tt, St, RT] instead. While trend and seasonality behave
linearly in the additive decomposition, the multiplicative method allows modelling non-
linear behaviour i.e. increase or decrease of changes over time. The latter should be taken
into consideration when the magnitude of seasonality depends on the magnitude of y(t).
Air passenger data from flight traffic provides a prominent example of such a relation.
The more people fly, the more extreme the seasonal spikes become.

The rest of this chapter focuses on how to isolate the components trend, seasonality, and
residuals.

2.1 Trend

Trend is probably the most intuitively interpreted component of a time series. Especially
in finance, long-term development receives special attention as it forms an important
investment decision factor. Despite this prominence, it is not always straightforward to
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detect a trend by human eye. When time series are subject to no trend at all, they are called
trend stationary (Brownlee, 2017). Constant mean and variance over time are indicators for
this. Forecasting models such as Autoregressive Integrated Moving Average (ARIMA)
for instance, assume stationariness in time series since it is a sign of statistical consistency
over the entire observation. There exist two common strategies to detect trend in time
series.

The first is based on the bare data visualization using moving or rolling averages. This con-
cept averages values of a series in a fixed window and moves this window alongside this
series. The intensity of smoothness can be steered by choosing an appropriate windows
size, which is the number of values to average. This window will trace the time series
from beginning to end, resulting in a seemingly continuous trend visualization. Generally,
rolling means plots start with a lag equal to the number of data points specified in the
window size since these are the minimum required values in order to calculate the first
mean value. In a centred moving average, however, this lag is reduced as the window
extends over past and future values by half. An alternative to the moving average, a tech-
nique called Locally Estimated Scatter-plot Smoothing (LOESS) can be used which represents
a trend by determining a fitting line based on a data point in the local area (James, Witten,
Hastie, & Tibshirani, 2013).

A second method to determine whether or not a time series is trend stationary is called
Augmented Dickey-Fuller Test (ADFT). This test introduced by Dickey and Fuller (1979)
extends the class of statistical unit tests (Pal & Prakash, 2017).
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4.3 Wassertemperaturen

Die Jahresmittelwerte der Lufttemperatur erreichten im 
Jahr 2018 Rekordhöhen (Kap. 2). Dies führte bei den 
Wassertemperaturen der Schweizer Fliessgewässer 
ebenfalls zu einem neuen Rekordjahr der jährlichen Tem-
peraturmittelwerte (Abb. 4.11). Im Vergleich zu den vor-
hergehenden Extremjahren 2011, 2014 und teilweise 
2015 wurden im Jahr 2018 daher bei aussergewöhnlich 
vielen Messstationen für Wassertemperatur neue Maxi-
ma der Jahresmittelwerte registriert. Insgesamt betrifft 
dies mehr als 50 Stationen des Messnetzes. Die Rekord-
werte treten vor allem auf im Jura, in der Rheintalebene 
unterhalb des Bodensees, im Mittelland sowie in südlich 
gelegenen Gebieten wie im Genferseegebiet oder auf der 
Alpensüdflanke (TI und GR).  

Zu Beginn des Jahres 2018 gab es bereits intensivere 
Wärmeschübe. Bei den meisten Flüssen führte dies schon 
im Januar und teilweise bis in den Februar hinein zu deut-
lich überdurchschnittlichen Wassertemperaturen. Bereits 

im Verlauf des Februars sanken die Temperaturen in den 
Gewässern wieder, um dann im März den langjährigen 
Durchschnitt zum Teil bedeutend zu unterschreiten. An 
einigen Stationen im Mittelland, in den westlichen und 
östlichen Zentralalpen wie auch auf der Alpensüdflanke 
führte diese Abkühlung zu neuen Tiefstwerten der Mess-
werte in diesem Monat seit Messbeginn. 

Die markante Frühlingserwärmung ab April führte bei den 
Gewässern wieder zu stark steigenden und überdurch-
schnittlichen Temperaturen. Überschreitungen der bis-
herigen Maximalwerte in den entsprechenden Monaten 
wurden aber nicht beobachtet. 

Erst im Verlauf der Sommermonate mit den langen Hit-
zeperioden, den Sonnenscheinrekorden und den abneh-
menden Abflüssen kam es zu einer massiven Erwärmung 
der Schweizer Fliessgewässer. Während im Juli bereits 
bei einigen Stationen im Hochrheingebiet, im Mittelland 
und in den Südalpen die bisherigen Höchstwerte ihrer 
langen Messreihen überschritten wurden, kam es im 
August zu einer deutlich steigenden Anzahl von mehr als 
30 Überschreitungen der bisherigen Höchsttemperaturen 
(Abb. 1.3 und 4.12). Davon betroffen waren vor allem das 
westliche Mittelland, das Hochrheingebiet, das Genfer-
seegebiet wie auch erneut die Alpensüdflanke. Im Sep-
tember ging dieser Trend dann wieder deutlich zurück. 

Von Juli bis September wurden bei einigen Stationen 
zudem in jedem Monat in Folge die bisherigen Maximal-
werte überschritten. Bei der Station Vorderrhein-Ilanz 
waren die Temperaturschwankungen so stark, dass im 
August nicht nur Höchstwerte, sondern auch neue Tiefst-
werte gemessen wurden. 

Ab September nahmen dann vor allem in der Südost-
schweiz die Überschreitungen der monatlichen Höchst-
werte ab; gleichzeitig wurden auch die bisherigen 
Tiefstwerte zunehmend unterschritten. Im Dezember 
nahm die Anzahl Stationen leicht zu, an denen nur die 
bisherigen Temperaturmaxima überschritten und auch 
nur die Minima unterschritten wurden, aber nicht beides. 
Im gleichen Zeitraum wurden jedoch auch bei 3 Stati-
onen im westlichen Mittelland und an 1 Station in den 
Südalpen (GR) die Maximal- und Minimalwerte über- und 
unterschritten.
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Abb. 4.11: Entwicklung der Wassertemperaturen von 1954 bis 2018 

in ausgewählten Flüssen der Schweiz 

Dargestellt sind gleitende Mittel (über 7 Jahre) als Linien und die 

letzten 4 Jahresmittel als Punkte bzw. Kreuze (Luft).

FIGURE 2.2: Rising Water Temperatures
The lines visualize a rolling mean over a period of seven years of the water temperatures

measured in Celsius (vertical axis) over time (horizontal axis) for a selection of nine water bodies.
The squares represent the annual means of the last four years, respectively the crosses but for air

temperature (BAFU, 2019, p. 28).
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2.2 Seasonality

A popular technique to search for seasonality is by means of an autocorrelation plot. It
represents the similarity of observed values over an increasing time lag. In other words, it
shows the correlation between the observed value on day i and the value on day i− L,
whereas L denotes the size of the lag measured in number of time units present in the data.
When performing an autocorrelation, the value which represents how the temperatures
are correlated with a shifted version of itself is computed for an increase lag L. This
technique can simultaneously be used for trend detection as the overall autocorrelation
trend is associated with the actual trend in the inspected time series.

Looking at Figure 2.3, it seems reasonable that at the beginning with L = 1 the correlation
between the two value sets is close to perfectly positive since one cannot expect significant
change within 1 day of lag. The opposite is present with L = 180, meaning a lag of 1⁄2 year.
This strong negative correlation originates from the fact that at this point warm summer
temperatures correspond to cold winter temperatures. The length of a complete cycle can
be read from the autocorrelation plot as well by looking at the lag between two peaks. The
case shown in the figure implies that a whole thermic season for the station "Grossbach -
Einsiedeln" (ID: 2635) lasts about one year.

To visualize the seasonality in the same purity as shown in Figure 2.1, a virtual cycle is
created using the mean values of all observations captured during the same cyclic time.
To provide an example, the average of all temperatures measured on 1st of January in the
considered time period represents the cycle’s temperature on that day. The entire cycle is
concatenated a user-defined number of times resulting in a uniform chain of cycles.
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FIGURE 2.3: Autocorrelation
This autocorrelation was performed using daily mean water temperatures captured at station

"Grossbach - Einsiedeln" (ID: 2635) over a period of four years from 2015 to 2018. The sinusoidal
development of the correlation between the temperatures with an increasingly lagged version of
itself attests that this data is subject to seasonality as it swings above and below the confidence

interval of 95%. However, the correlation becomes less significant with increase lag as the amount
of comparable data points decreases.
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2.3 Residuals

Once trend and seasonality are identified, the remaining components are known as
residuals. This is done by resolving the decomposition equation for the unknown Rt.
Residuals must exhibit strong evidence of randomness i.e. they are uncorrelated or white
noise as otherwise the two preliminary components trend and seasonality may not be
extracted completely. When applying an autocorrelation analysis on the pure residuals,
for instance, no pattern should be discoverable anymore.
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3 Clustering

A common goal in data analysis is the automatised discovery of patterns which in some
cases are undetectable by human eye. Research in the field of pattern recognition (PR) is
comprehensively conducted as the practical applications of it deliver valuable benefits.
That is, for instance, the automatic detection of spam emails, determination of a cell’s
cancer potential, or the classification of creditworthy customers.

This chapter will therefore provide a brief introduction to the different PR families. The
focus, however, lies on hierarchical clustering since this is the technique chosen for the
grouping of metering stations in this thesis.

3.1 Pattern Recognition Families

Before addressing the different approaches in PR, it is useful to declare the common
aspects of it. Generally, the goal is to separate or partition a landscape of data objects
into classes or clusters based on resembling features. The objects embraced in the same
group should share high similarity (intra-class) and ideally show high dissimilarity to
data objects embraced in other groups (inter-class) (Mann & Kaur, 2013). In pattern
recognition, the techniques used to determine how similar two data objects are referred
to as distance functions. Generically spoken, a distance function fd takes two data objects
{x, y} as input and returns a scalar fd(x, y) = s which is referred to as distance. A small
distance value indicates that the two data objects share high similarity or low dissimilarity
while a high distance value expresses low similarity or high dissimilarity. Fully qualified
distance metrics satisfy four properties, as described by (Cullinane, 2011). These includes
non-negativity, symmetry, and triangle inequality.

Statistical PR represents the first and probably the most scientifically elaborated family
(Jain, Duin, & Jianchang Mao, 2000; Webb & Copsey, 2011). It divides into supervised and
unsupervised PR, which is derived from the fact of whether or not a learning or training
set is available. In both categories, the data objects are described by the same number of
features and a target feature that represents the predicted class or cluster number.

Supervised PR is commonly referred to as classification. A pre-labelled learning set is
used in order to train a model that is capable of labelling or classifying new unseen data
object accordingly. Pre-labelled in this context means that the target feature is known for
the data objects in this set (i.e. the ground truth). Money lending data provides a popular
example of this kind of use case. Here, the data objects are individuals that apply for a
loan. The data objects are described by features like age, yearly income, and assets. The
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target feature indicates whether or not someone is able to payback a granted loan. New
individuals that share high similarity with data objects from the training set are likely to
be classified with the same target feature. Prominent supervised PR algorithms are among
others the k-Nearest-Neighbour, decision trees, or support vector classifiers.

Unsupervised PR techniques are used when no training data exists which could supervise
the process of grouping similar objects together. Instead, one solely relies on the given
data objects and its relative resemblance to each other. Customer categorization in online
stores serves as an example. Features such as login frequency, average search time, and
monthly revenue could describe the data objects in this domain. A cluster analysis may
reveal a certain grouping pattern. The emerged clusters ideally justify with real-world
explanations and therewith enhance the understanding of the business (e.g. one group
contains mainly young students with rather low solvency). Iterative Relocation Algorithms
(IRAs) such as k-means1 or k-medoids, hierarchical clustering (further discussed in next
section), or clustering performed using minimum spanning trees serve as examples for
popular unsupervised PR techniques.

In structural PR, the underlying data is represented using graphs (Fu, 1974; Riesen, Jiang,
& Bunke, 2010). This allows to not only analyse data objects atomically based on the
describing features but also to include relationships among different data objects. This
results in a more comprehensive and thus realistic representation of the data scenario.
Picturing relationships is not possible in statistical PR which is seen as a disadvantage
as there is barely real-world data with perfect inter-independence. On the other hand,
structural pattern discovery algorithms are usually subject to higher computational com-
plexity as they rely on graph theory (Rosen, 2019). Images for example can be structurally
described by representing maximized pixel areas with similar colouring as nodes in a
graph. The node’s connections, so-called edges, refer to the boundaries between these color
areas. One approach to determine the (dis)similarity of two graphs is to count the number
of minimum manipulations required to transform one graph into the other, which is the
so-called graph edit distance (Riesen, 2015).

Two more families can be declared. One focuses on the unification of statistical and
structural PR and can thus be named as Hybrids. They aim to combine the benefits from
these two methodologies while excluding the disadvantages. The other entitles the field
of End-To-End Learning. Here, the significant difference to the other families is the fact that
features are learned autonomously rather than being engineered by the operator. This is
especially useful when working with images or tones as they exist to large extends in the
domain of autonomous driving for example.

1applied in Figure 1.1
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3.2 Hierarchical Clustering

As previously mentioned, hierarchical clustering belongs to the family of statistical un-
supervised PR. Together with IRAs, they belong to a group of techniques that are very
popular in cluster analyses. The concept of distance functions for (dis)similarity determi-
nation between data objects is crucial in both as well. They differ, however, in the way the
resulting cluster allocation of data objects is evolved and presented at the end. The simple
algorithmic processes make both approaches trivial to understand and are applicable
with low computational effort. Numerous open-source programming libraries exist that
implement these algorithms. One of the most known libraries is called scikit-learn (Buitinck
et al., 2013; Pedregosa et al., 2011). This specific library was also used for the analyses in
this thesis.

Hierarchical clustering algorithms generally receive three elements as an input, namely
the set of data objects to be clustered, a concrete distance function fd, and the linkage
definition. The latter will be explained in the next section.

In a first step, a symmetric distance matrix is generated with a size equal to the number of
data objects in the set denoted as n. The values in this matrix are calculated using fd. The
number calculation required is n(n−1)

2 as only every unique data object pair needs to be
processed, excluding the distance to itself.

The resulting distance matrix could already be used to visualize similarities by applying
conditional formatting on the individual distance values. Heat maps implement this
strategy by colouring high values brighter than low ones. To provide an analogy, consider
the data objects projected in the vector room as cities located on a map and the distance
matrix as a lookup table for travelling times between them. The distance matrix allows
establishing a road map where the data objects are located in relative distance to each
other.

What follows next is the actual grouping of data objects. Here, two different types of
algorithms exist that are either agglomerative or divisive. In agglomerative algorithms2,
each data object forms its own cluster at the beginning. The clusters are then gradually
combined resulting in fewer clusters that contain more data objects. The combining order
orients itself at the inter-cluster distances going from close to far. Technically, this process
ends when just one cluster embraces all the data objects. Practically, however, this is
not a desirable state as such a clustering does not deliver valuable insights. Divisive
algorithms3 reverse this process starting with one cluster that contains all the data objects
and gradually dividing it into smaller clusters embracing fewer data objects. The process
ends when each data object represents one cluster, which would be again not insightful.

Both agglomerative and divisive algorithms output clusters that represent disjoint sets of
data objects which is why they are called hard clusters. On the contrary, fuzzy clustering

2also known as agglomerative nesting (AGNES)
3also known as divisive analysis (DIANA)
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Data objects d1 d2 d3 d4 d5 d6

1 cluster 0 0 0 0 0 0
2 clusters 0 1 1 0 0 0
3 clusters 2 1 1 0 0 0
4 clusters 2 0 0 1 3 1
5 clusters 2 4 3 0 1 0
6 clusters 5 4 3 2 1 0

TABLE 3.1: Hierarchical Cluster Composition
This table shows an example of how the hierarchy received from a hierarchical clustering

algorithm could look like, given a distance matrix for six data objects. The digits[0− 5] refer to the
cluster number and serve as identification. The total number of clusters is stated in the first

column.

algorithms allow expressing the cluster memberships of a data object in the form of
proportions. Another overlapping feature and predominantly the most important one
is the fact that the entire cluster composition hierarchy is obtained. This reveals two
advantages. First, it is recognizable in which order and at what stage groups of data
objects merge, respectively divide. Second, since all the cluster compositions are recorded
from minimum (one cluster for all data objects) to maximum (each data objects forms its
own cluster), all of them can be used for quality assessments. This makes a brute-force
approach i.e. testing all possibilities to find the ideal number of clusters comparatively
cheap and thus more attractive.

An example of such a hierarchy can be seen in Table 3.1. It shows the hierarchical clustering
of six data objects. The cluster membership of each data object is represented by numbers.
In the first row, all objects belong to the same single cluster 0. With an increasing number
of clusters, the label variety grows and reaches its maximum in the last row where every
data object represents its own cluster enumerated as [0− 5]. Since the labels only serve
the purpose of cluster membership identification, changing labels as it is the case for d2

and d3 from 3 to 4 clusters, for instance, has no meaning.

At this point, it must be stated that such a cluster membership trace as shown in this table
could also be derived using techniques from other PR families such as IRAs. However,
there are two differences compared to hierarchical cluster algorithms. One is the higher
computational effort as IRAs are usually not applied on distance matrix but work directly
with the individual (multi-dimensional) data objects. The other difference is the lack of
determinism4. IRAs use random starting points for the required number of clusters which
is given as an input parameter.

4given input leads repetitively to the same output
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3.2.1 Visualization

Once a hierarchical system of information has been established, the desire for visualisation
arises. This is especially true in hierarchical clustering as it provides a more intuitive
understanding of the similarities among the data objects compared to a heat map. Probably
the most common approach to visualize hierarchical clusters is by means of a so-called
dendrogram. An example is seen in Figure 3.1. It represents the hierarchical cluster
composition in the form of a tree. The 55 data objects at the bottom represent the leaves
connected by converging branches to the root of the tree at the top. Although the tree’s
orientation has no relevant meaning, it is usually drawn as shown or rotated through 90°.

The lengths of the lines connecting the data objects directly or grouped subsets of them
play an important role. The longer such a connection line is, the more dissimilar the
connected elements are. This positive correlation between line length and disparity is a
second important insight provided by a dendrogram. Generally, high-level groupings
are desirable as they indicate great differences between the sub-clusters underneath. This
implies that the given data landscape can be apportioned into rather compact clusters
that are located at decent distances to each other. Such clearly distinguishable clusters,
however, are rarely produced when dealing with real-world problems.

Once a dendrogram is established, one can set a user-defined cutting point through the
tree to receive a specific number of clusters. In Figure 3.1, this is demonstrated with
the grey dashed line. The number of clusters equals the number of connected data
object bundles or branches that would "fall down" when the tree is cut at this point. The
illustrated example would therefore produce six clusters. These are namely the green,
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2009-01-01 to 2018-12-30, 10min values, 55 series
Approach: DTW (window size = 144)

Dendrogram (linkage = complete, clusters = 6)

FIGURE 3.1: Dendrogram
Shows the hierarchical cluster composition of 55 metering stations using ten-minute values over
10 years. A cut line is set to highlight a composition consisting of six clusters. The vertical fork-like

lines indicate the degree of dissimilarity among the sub-clusters being grouped. Higher lines
indicate that the assembled or dissembled groups share greater dissimilarity.
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red, cyan, magenta, and yellow bundle plus the blue one which points only to a single
data object (station 2161, "Massa - Blatten bei Naters") representing its own cluster. This
concrete grouping is visualized in Figure 3.2 by plotting the individual time series into
their clusters of membership. For the sake of render efficiency, the plotted hydrographs in
this thesis rely on weekly mean values.

Such a concrete representation can be constructed for every possible cut point in the
dendrogram. This allows a comfortable perusal of the individual results including the
course of mutation. With an increasing number of clusters, the overlaying hydrographic
shapes per cluster are subject to a better alignment as the group size decreases and the
remaining time series share a higher resemblance. Cluster 6 in the figure, for example,
only holds one data object as the temperature measure at this station (i.e. its hydrographic
shape) apparently is too unique to be aligned in any other group.

However, it must be stated that the shape alignment does not necessarily serve as a
cluster quality indicator. The hierarchical grouping decisions solely rely on the given
distance matrix which on the other hand was solely constructed using a specific distance
measuring strategy. This strategy may declare two time series as highly similar although
their hydrographic shapes do not verify this claim. It results that images as shown in
Figure 3.2 should be interpreted with caution.
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FIGURE 3.2: Clustered Hydrographs
This cluster composition was created based on the dendrogram and the given cut-point shown in
Figure 3.1. Each cluster embodies a specific type of hydrographic shape which is an indicator for a
successful clustering. The individual stations that generated these time series are declared in the

legends of the sub-plots.
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3.2.2 Linkages

The beginning of Section 3.2 outlined the input elements for a hierarchical clustering
algorithm. Intentionally skipped in the course of explanation was the linkage method5.
The linkage defines the methodology of the agglomerative composition approach. In
other words, it specifies when which (bundles of) data objects are to be combined. Single,
complete and average linkage are the most common methods (Webb & Copsey, 2011).

An agglomerative hierarchy clustering algorithm gradually combines the two sub-clusters
which are closest to each other. In order to determine the next cluster pair to be combined,
one must calculate a distance dC between all possible cluster pairs. This distance, however,
is not to be confused with the distance function fd used to establish the initial distance
matrix. While dC is used for decision making during the cluster agglomeration process, fd

allows calculating the (dis)similarity of two data objects in the form of a value. The latter
has already been applied in an antecedent stage in order to receive the distance matrix.

Always the two sub-clusters that minimize the distance dC between them will be combined
in the next iteration. The linkage criterion, however, defines the implementation of this
inter-cluster distance method as shown in Figure 3.3. Single linkage defines, that the
distance between two sub-clusters is measured using the closest data objects from each
set6. Complete linkage focuses on the two most distanced data objects. In average linkage,
the mean distance between all inter-cluster pairs is used.

All the cluster analyses conducted in this thesis are consistently performed in three
versions using all the presented linkage methods. The reasoning behind this approach
is the goal of covering a broader parametrization variety. Iterating through these three
linkages during the clustering process is an especially cheap operation given the pre-
calculated distance matrix.

The dendrogram shown in Figure 3.1 was build using complete linkage. For comparison
purposes, see the dendrograms of the same scenario with average and single linkage in
the annexed Figures A.3 and A.5.

1

𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒

FIGURE 3.3: Three Different Linkage Methods
The linkage criterion defines the combining methodology in hierarchical clustering algorithms. In
each hierarchical stage the two clusters with the shortest distance between them are combined. To
receive this value, single linkage considers the least-distanced data objects of two different clusters,
complete linkage the most-distanced, and average linkage the mean distance of all inter-cluster

pairs.

5also called linkage criterion
6neighbours
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3.3 Cluster Validity Indexes

The quality assessment of a conducted clustering is in contrast to classification problems
more difficult since no ground truth exists which could serve as a reference. Another
difficulty is to find the correct or ideal number clusters. There are various techniques to
express the quality characteristics of clusterings in terms of a number which eventually
allows differentiating a better clustering from a worst. These techniques are referred to
as Cluster Validity Indexes (CVIs). They either persuade an internal or external validation
methodology in order to provide insights about how good a specific cluster composition
is relative to another. Internal indexes calculate a quality measure by exclusively relying
on the partitioned data landscape while external indexes work with additional or external
information such as prior knowledge about the data or even a reference partition (Wang,
Wang, & Peng, 2009).

The two main properties assessed by internal metrics are the compactness and the separation
of the individual clusters (Liu, Li, Xiong, Gao, & Wu, 2010). To understand both properties
best, it helps to think of a two-dimensional vector space in which several data objects are
grouped into a few clusters. The more similar the data objects in a distinct cluster are,
the less dispersion is present which results in greater compactness. For the concept of
separation, the distance between two clusters is observed. Very distanced clusters result
in better separation. Superior clusterings minimize inter-cluster distances and maximize
intra-cluster distances.

Although there are numerous CVIs available nowadays (Desgraupes, 2017), this thesis
focuses on four internal ones. Since the underlying data for the cluster analysis is not
associated with any prior cluster knowledge which could be used for external CVIs. The
selection of indexes in this thesis was inspired by the most popular ones, namely the
Calinski-Harabasz Index, Davies-Bouldin Index, Dunn Index, and Silhoutte Index. The
rest of this section surveys all of them. The provided explanations rely on Desgraupes.

3.3.1 Calinski-Harabasz Index

The Calinski-Harabasz Index (CH) was proposed by Calinski and Harabasz in 1974. It
measures the ratio between the average within-group-scatter (WG) and the average between-
group-scatter (BG), where group refers to cluster. The scatter is defined as the sum of
squares error SS of each data object in reference to a cluster’s centroid (WG), respectively
the barycentre of the whole data set (BG). The Euclidean distance serves as metric to
determine the difference between to vectors ‖vi − vj‖.

To determine the between-group-scatter sum of squares error BGSS, the deviation between
each cluster’s centroid m to the barycentre of the whole data set M is calculated, whereas
K denotes the total number of clusters and n the number of data objects in a cluster acting
as a weighting factor. This is formulated in Equation 3.1.
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BGSS =
K

∑
k=1

nk‖mk −M‖2 (3.1)

To determine the within-group-scatter sum of squares error WGSS, the deviation between
each data object x in a cluster C to its centroid mk is calculated. It is formally stated in
Equation 3.1.

WGSS =
K

∑
k=1

∑
x∈Ck

‖x−mk‖2 (3.2)

Eventually, the index expresses the ratio between the two group-scatter metrics with
respect of the degrees of freedom N − K for BGSS and K− 1 for WGSS. In Equation 3.3,
N denotes the total number of data objects in the set while K expresses the cluster count.

CH(K) =
BGSS
WGSS

· N − K
K− 1

(3.3)

As the number of clusters K increases, the number of data object x per cluster declines and
with it the WGSS. Meanwhile, BGSS increases since the number of clusters rises. Superior
clusterings try to minimize WGSS while maximizing BGSS. Hence, the CH is intended to
be maximized. In other words, the higher the index value, the better the clustering.

3.3.2 Davies-Bouldin Index

The Davies-Bouldin Index (DB) was suggested by Davies and Bouldin in 1979. Here, each
cluster k is compared to all other clusters in order to find Qk, which is a maximum of the
definition as

Qk = max
k 6=k′

{
δk + δk′

‖mk −mk′‖

}
, (3.4)

where δk represents the mean distance of a cluster’s data objects to its centroid mk. The
same metrics for k′ refer to any other cluster but itself. Once Qk has been found for each
cluster, DB expresses the average of it given the total number of clusters K.

DB(K) =
1
K

K

∑
k=1

Qk (3.5)
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Clusters that embrace their associated data objects tightly around its centre will obtain a
relatively small δk. Simultaneously, clusters that are located very remote will exhibit large
‖mk −mk′‖ distances which eventually leads to a small Qk as a maximum. In a superior
clustering, the average Qk manages to remain small. Thus, the optimal cluster number
can be found by minimizing DB.

3.3.3 Dunn Index

The Dunn Index (DI) represents the ratio between the minimal distance of two data objects
from different clusters dmin and the maximal distance of two data objects within the same
cluster dmax (Dunn, 1973). The latter metric is also referred to as diameter. The utilization
of these extreme values reasons why this index is highly sensitive to outliers. Equation 3.6
states the DI formally.

DI(K) =
dmin

dmax
(3.6)

The smaller the diameter dmax is, the less scatter is present within the clusters which in
turn is a sign for high compactness. A large minimal inter-cluster distance dmin testifies
great dispersion among the individual clusters indicating high separation. It results that
superior cluster compositions maximize this index.

3.3.4 Silhouette Index

The Silhouette Index (SI) represents a fourth internal CVI. It was originally introduced by
Rousseeuw (1987). In order to receive an intuition for this metric, it is worth decomposing
it as follows.

For each data object, the mean distance to all other data objects in the same cluster a(i)
is calculated. The total number of data objects in the cluster is denoted by nk. The value
of a(i) represents how well a data object xi fits into the allocated cluster. It is formally
defined in Equation 3.7.

a(i) =
1

nk − 1 ∑
i′∈Ck

i′ 6=i

fd(xi, xi′) (3.7)

Secondly, the dissimilarity of each data object to all other clusters is calculated, with the
exception of the own member-cluster. To derive this value, the mean distance of a data
object x of cluster Ck to all data objects of a cluster Ck′ is determined. The minimum
mean distance is denoted by b(i) which simultaneously uncovers the data object’s closest
neighbour cluster (see Equation 3.8). In other words, the bigger b(i) becomes, the more
remote this particular data object xi is located from all other clusters. One can conclude
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that xi demonstrates high dissimilarity compared to the rest. The variable nk′ represents
the number of data objects which do not belong to the same cluster as the data object xi.

b(i) = min
k 6=k′

1
nk′

∑
i′∈Ck′

fd(xi, xi′) (3.8)

After a(i) and b(i) are determined, the silhouette width s(i) can be calculated for each
data object. This is formally expressed in Equation 3.9. This width will result in a value
between −1 and 1. A value very close to 1 testifies that the underlying data object fits
perfectly in its allocated cluster. On the other hand, a negative s(i) implies that there is
another cluster in which the data object would fit better.

s(i) =
b(i)− a(i)

max {a(i), b(i)} if nk > 1 (3.9)

After s(i) is determined for all data objects in the set, one can calculate the mean silhouette
width per cluster S(k). Eventually, the sum of all S(k) divided by the total number of
clusters K represents the final value of the SI as shown in Equation 3.10. As a value s(i)
very close to 1 testifies that a data object is placed in the ideal cluster, the mean of the
mean should also be close to 1. Therefore, superior clusterings maximize this index.

SI(K) =
1
K

K

∑
i=1

S(ki) (3.10)
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4 Distances for Time Series

The characteristics of time series data as well as the algorithmic process of clustering
algorithms, in particular hierarchical, have been addressed so far. This includes the
representation of water temperature data over time as multi-dimensional data objects
and the importance of distance measurement between such data objects in order to
determine how similar these objects are. This chapter elaborates three different distance
measurement strategies applicable to time series. An extensive review on this is provided
by Aghabozorgi, Shirkhorshidi, and Wah (2015).

Beforehand, the general procedure is declared in order to provide an understanding of
where the distance measurement is located in the overall process. After the data is loaded
into the memory, there exist two intermediate steps before the actual distance calculations.
That is the definition of the period in focus (e.g. ten years) and the aggregation level of
the underlying data (e.g. daily mean values). All the subsequent tasks are predicated on
the received distance matrix and hence have unified character. In other words, the only
differencing task in the entire clustering process chosen strategy to create the distance
matrix. What follows is the application of the hierarchical clustering algorithms with
different linkages, building the individual cluster compositions, and finally assessing their
quality.

The amount of data to be processed plays also an important role. In order to receive a
distance matrix, all unique pairs of data objects in a set have to be compared. A set of n
data objects requires n(n−1)

2 number of comparisons for this task. Thus, additional data
objects increase the computational effort at a growing rate. Depending on the chosen
distance measurement strategy, this could have serious negative repercussions on the
performance.

The use of code parallelization qualifies to counteract this issue (Wolohan, 2020). This
concept demands to organize all data objects in pairs alongside with the distance function
to be applied without performing any kind of calculation yet 1. Afterwards, this job list is
passed to a pool of central processing units (CPU) which executes the predefined orders
in parallel. One also speaks of workers in this context.

This asynchronous operating technique is essential when high computational performance
is desired. Multiple processes start at the same time, each performing one comparison
after another. The process is further accelerated the more random access memory (RAM)
is available. Duplications are excluded as the pool instance only allocates unattended jobs
to workers. The independently received results are eventually consolidated and ordered.

1comparable with a to-do-list
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Thanks to this technique the computation time for one distance matrix with 55 series over
ten years of ten-minute value could be reduced to a few seconds. It is to be mentioned,
however, that all calculations were executed on a calculation server of BFH providing 88
CPUs with approximately 1 terabyte of RAM.

4.1 Pairwise Distance

The first concrete distance strategy describes the rather trivial approach of comparing two
time series according to their sequentially ordered values. This strategy is simply called
Pairwise Distance (PDIST) since it does not consider any aspects other than a bijective2

mapping of the values with identical indexes from both series. PDIST belongs to the
group of shape-based distances and is called a lock-step measure. As already mentioned,
the values indexed over time received from one metering station is represented as a
multi-dimensional data object, whereas each dimension captures one index. Given two
time series t1 and t2 of daily mean water temperatures, for instance, PDIST compares the
temperature captured at any date in t1 with the value on the same day in t2.

PDIST is actually a generic strategy that can be implemented with a range of concrete
distance functions. The selected function, in this case, is the so-called Euclidean distance,
which is defined in Equation 4.1. The distance between the two data objects a and b is
defined by the rooted sum of all squared differences of all their dimensions n.

fd(a, b) = ‖a− b‖2 =

√
n

∑
i=1

(ai − bi)2 (4.1)

The rationale behind this selection is based on the function’s simplicity and popularity in
the clustering domain. There exist many other distance functions that are applicable in
the context of PDIST (Cha, 2007).

A prerequisite in statistical PR is that the two compared data objects are described with
the same amount of attributes or dimensions. Applied on times series, this means the
measuring period must exhibit the same number of values in order to allow such a
comparison. However, the actual time periods may differ. Concretely this means that
one could compare two time series with each other that capture data from two different
decades as long as these series share the same value count. The results might be dubious
and misleading but the technique can be applied.

2one-to-one
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4.2 Dynamic Time Warping

The second applied distance measuring is based on the Dynamic Time Warping (DTW)
algorithm, which was introduced by Sakoe and Chiba (1978). DTW was originally con-
structed for speech processing but in the meantime has found large application in time
series analysis (Nielsen, 2019). This strategy also belongs to the group of shape-based
distances but is called an elastic measure.

Consider the scenario where two metering stations are located on the same water body.
One of them, however, resides a couple of kilometres further downstream. Detected
temperature changes at the first location (e.g. due to ice melting in spring) are likely to
be observed at the second location as well, provided no other influential forces such as
underwater springs or river mouths apply along the way. As a result, these two metering
stations exhibit a very similar shape of their hydrographs3 in terms of temperature. The
only salient difference could be a non-linear shift of the shape due to irregularly lagged
discovery at the second station. One could also say that the measurements are warped in
time or vary in speed.

Despite these non-linear warps, the two described stations in this example show high
similarity in their temperature behaviour which should be accounted for. The PDIST strat-
egy would disregard this due to the sequential processing of the data object’s dimensions.
DTW on the other hand addresses this issue by establishing a surjective4 mapping of the
temperature indexes, as shown in Figure 4.1. Consequently, the distance between these
two exemplary time series will correctly be declared as low, indicating high similarity.
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FIGURE 4.1: DTW Cost Matrix
The two time series shown in [A] are non-linearly lagged in time. The cost matrix in [B] allows to
find a mapping path that minimizes the total costs and thus accounts time warps appropriately.

The resulting surjective mapping is shown in [C]. (Inspired by Keogh and Ratanamahatana (2005))

3a graph showing the change of a hydrologic variable over time
4one-to-many
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The algorithmic process of the DTW is divided into two steps. The following explanations
rely on Keogh and Ratanamahatana (2005). The first step includes the creation of a cost
matrix with n ·m elements, whereas n and m correspond to the number of observations in
the compared time series A and B. This can formally be expressed as follows.

A = {a0, a1, . . . , ai, . . . , an}
B =

{
b0, b1, . . . , bj, . . . , bm

} (4.2)

The individual cost is calculated using the distance function d(ai, bj) = (ai − bj)
2. The

second step includes the finding of a mapping path P which consists of matrix elements
seen as weights {w0, w1, . . . , wk, . . . , wK}. These elements are highlighted in yellow in
Figure 4.1. There are three constraints that affect P to ensure a continuous monotone path
evolution between the two corners of the matrix:

• The boundary constraint forces the path to start at the matrix element (i0, j0) and end
at (in, jm).

• The monotonicity constraint ensures a monotone path evolution between the two end
points with is−1 ≤ is and js−1 ≤ js, with s as index enumerator.

• The continuity constraint prevents time jumps with is − is−1 ≤ 1. The same applies
to j.

It is common to introduce a fourth constraint that acts as boundaries for the expansion of
the warping path. These boundaries imply that an index i only can be mapped with an
index j in the range of [j− u, j + v], given that i = j. The absolute sum of (u, v) is known
as window size. A modest window allows reducing the computational effort as fewer
mapping candidates exist. A window size of 1, however, transforms the DTW algorithm
into the PDIST strategy. The rationale behind this windowing is inspired by the fact that
also a possible time-shift has a certain limit. In terms of water temperatures, such a limit
lies between one to three days. In other words, the window size defines the freedom of
non-linear movement during the index pairing process.

Although there exist many different eligible versions of P, the DTW algorithm focuses on
the path that minimizes the total cost. This subsequently declares the distance between
the two candidate time series as formally defined below.

fd(A, B) = min


√√√√ K

∑
k=0

wk

 (4.3)

To summarize, the DTW algorithm skews the dimension pairing in a way that potential
non-linear time warps are addressed in a favoured manner. This eventually results in a
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FIGURE 4.2: Time Warping Effect
Shows the subsequent bijective index mapping conducted during PDIST in comparison to the
DTW approach that establishes a non-linear surjective mapping resulting in the warping effect.

higher and thus more realistic distance declaration of two time series that indicate similar
values over time but at varying speed. The DTW implementation employed in this thesis
uses the Euclidean distance. However, there are implementations that allow other distance
metrics to apply, such as the City Block distance5. One also speaks of differently flavoured
DTWs in these cases.

Figure 4.2 illustrates the DTW behaviour by setting it in contrast to the more trivial
distance measuring strategy PDIST. The resemblance of the two time series shown in red
and blue is captured more properly by addressing these time warps.

An important requirement for a DTW application is the fact that the compared time series
must start and end at identical points in time. When this requirement is disrespected, for
instance by comparing two time series (t1, t2) whereas t2 represents a subset of t1, the
shorter series will be stretched in time to meet this requirement again. This event may
influence the integrity of the comparison in a negative way. The treatment of time series
with different lengths, on the other hand, does not represent an issue. This ability is even
claimed to be another advantage of the DTW algorithm since it allows to further reduce
the computational costs. However, there is no significant impact on the result’s accuracy
as shown by Ratanamahatana and Keogh (2004).

4.3 Discrete Wavelet Transformation

The third distance measurement strategy pursued in this thesis is based on the signal
decomposition procedure called Discrete Wavelet Transformation (DWT) as conducted by
Hong-fa (2012). In contrast to the previous two strategies, DWT belongs to the family of
feature-based distance metrics since the actual form of the temperature curve is not taken
into consideration. Instead, a time series is described by independent attributes or features
with no notion of time. This implies that the individual feature values are all somehow
derived from the original series and thus no longer share any order-defining index. An
example would be the trivial description of a time series using its mean, extreme values,
amplitude, phase, and average wavelength.

5also known as Manhattan distance
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DWT aims to decompose a signal or time series into its building blocks. To accom-
plish this, different discrete wavelets are used as filters. The signal is successively
passed through these filters in order to receive coefficients that approximate the orig-
inal time series in versatile levels of detail. The wavelet filter used in the DWT imple-
mentation for this thesis is called Haar wavelet and represents simplest of its kind
(Haar, 1910). The size of these extracted coefficients is correlated with the impor-
tance of this individual signal component, whereas great coefficients indicate highly
influential sub-signal. Therefore, this distance measurement strategy extracts the top
100 most influential coefficients as describing features for a time series.

Especially applied on non-stationary time series, i. e. data with fluctuating mean
and variance over time, DWT yields competitive results (Chaovalit, Gangopadhyay,
Karabatis, & Chen, 2011). Due to the selection of the components with the most
influential power on the original signal it becomes feasible to compare time series of
different lengths. All the remaining

FIGURE 4.3: Signal Frequency Decomposition
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FIGURE 4.3: Signal Frequency Decomposition using DFT
The original signal in red is decomposed into composite sine waves illustrated in blue that, when
added together, represent the original again. These building blocks differ in their frequencies as

wells as magnitudes and thus possess different level of importance. (Image adapted from
Roelofsen (2018))

It is helpful to explain the idea of DWT by means of the Discrete Fourier Transformation
(DFT) which follows a similar concept. DFT aims to decompose a signal into its building
blocks. Figure 4.3 illustrated this decomposition of the original signal in red into the
various composite signals in blue ordered by their impact force. All of them represent
infinite sine waves which is why DFT is best applicable on stationary data.

DWT on the other hand decomposes a signal by means of different discrete wavelets that
serve filters. The signal is successively passed through these filters in order to receive
coefficients that approximate the original time series in versatile levels of detail. Thanks to
this passage, the point in time when this specific wavelet occurred is captured. This addi-
tional information describes the original signal more extensively as DFT and thus leads to
better clustering results (Aghabozorgi et al., 2015). This seems to contradict the principle
of a feature-based distance metric where chronological information is absent. Since it is
only the most influential composite signals over the entire period, descending ordered
according their coefficients, this time information is neutralized again. Furthermore, it is
to mention that DWT should only be applied on stationary data as the individual wavelets
only represent excerpts and thus possess no knowledge regarding an overall trend.

The size of these extracted sub-signal coefficients correlates with their importance, whereas
large coefficients indicate highly influential sub-signals. The concrete implementation
of this distance measurement strategy in this thesis extracts the top 100 most influential
coefficients as describing features for a station. The filter used in the DWT implementation
for this thesis is called Haar wavelet and represents the simplest of its kind (Haar, 1910).

As only the most influential signal components are selected, it becomes feasible to com-
pare time series of different lengths. This dimensionality reduction has the consecutive
advantage of de-noising the underlying data. The intensity of this effect is user-defined.
For subsequent clustering tasks, an ideal level may be found by incrementalism.
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5 Results

This chapter examines the cluster results received by applying the different distance
measuring strategies explained in the previous chapter. It is comparatively easy to assess
the performance of a classification model used for supervised PR problems since a ground
truth is available. This does not apply to unsupervised PR problems such as cluster
analyses. Nevertheless, there are still techniques to identify superior clusterings. It must
be said, however, that the insights from these kinds of methods are not equally meaningful
as the ones received in a supervised setting due to the fact that they express the qualities
of the different cluster compositions relative to each other.

Besides the question of which clustering approach works best, it is also questionable what
number of clusters is ideal. Compositions with a high number of clusters are generally not
appreciated as they become meaningless. An extreme example would be the clustering of
n data objection into K clusters with n = K. One rather demands a clustering method to
yield superior CVIs values as soon as possible, meaning with a low number of clusters.
This event aligns with the issue of determining the ideal number of clusters1 as reviewed
by Kodinariya and Makwana (2013). A common method is to pay attention to so-called
elbows in the CVI plots. They occur when the index value exhibits a steep fall or rise at the
beginning of increasing cluster numbers followed by a rather linear course.

The detection of elbows in CVI plots is rather simple by human eye but at a cost of
subjectivity. Its automated determination using algorithms is possible, however, requires
parametrization which again is subjective. The cluster quality assessments in this thesis
focus on distinct indicators that are programmatically detectable such as global extreme
values, rate of changes, or inflection points2.

The rest of this chapter structures into two parts. Foremost it is explained, how to measure
the quality of a single cluster with a more independent metric. Afterwards, it is shown how
these metrics are further processed to finally compare the different clustering approaches.
Although the visuals shown in this thesis mainly focus on one specific approach that is
DTW on ten-minute data and with a window size 144, they were produced for all three
distance measurement strategies and aggregation levels. An extensive visual comparison
of all the different CVIs and how they performed per presented linkage method can be
found in the attached Figures B.8, B.9, and B.10.

1also known as true number of clusters
2point where a curve transitions from convex to concave
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5.1 Cluster Quality

As previously stated, a superior clustering maximizes both intra-cluster similarity and
inter-cluster dissimilarity. Popular metrics to assess these characteristics are internal CVIs
which were addressed in Chapter 3 and applied for all cluster compositions in this thesis.
However, it is valuable to also test the cluster qualities with more independent metrics.
These metrics are intentionally distinguished from CVIs as they embody domain-specific
calculation processes.

One way to introduce such an independent metric is by means of forecasting deviation.
Figure 5.1 visualizes this undertaking. The illustrated cluster composition was established
using DTW as a distance strategy and complete linkages as a cluster aggregation method.
The same scenario with average and single linkage is shown in the annexed Figures A.4
and A.6.

To measure this forecasting deviation, one first has to create a virtual series sV by averaging
all the time series in a cluster. This mean series can also be seen as a cluster representative.
Subsequently, the first 2⁄3 of sV (blue line) trains a forecasting model in order to predict the
remaining 1⁄3 (red line).

The forecasting model can only be as good as the derived virtual time series representing
this cluster. In this thesis, the rather trivial forecasting method of a repetitive yearly cycle
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FIGURE 5.1: Clustered Hydrographs with Residual Scores
Shows the water temperatures series from 55 stations over the period of ten years grouped into six
clusters. The first seven years of the mean series (blue) is used to predict the last three years (red).
The cluster quality is eventually determined by assessing the misfit of this forecast compared to
the actual values using the RMSE. The average misfit is expressed as Residual Score (RS) in the

individual cluster titles.
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created by averaging the cycles in the training period was applied. The more sophisticated
model ARIMA could also be used here as demonstrated by Roelofsen (2018).

Lastly, the prediction accuracy is assessed by comparing the prognosticated temperatures
with the actual ones from each time series in this specific cluster. This is accomplished
using the popular concept of the Root-Mean-Square Error (RMSE)3 for each comparison as
formally defined in Equation 5.1.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (5.1)

The overall misfit is determined by the deviation between the measured temperature y
and its prediction ŷ under consideration of the total number of data points n. The RMSE
is identified between all the time series in a cluster and its representative series sV . The
Residual Score (RS) describes the mean value of all RMSEs in this cluster. Formally, this can
be expressed as RS = ∑ RSME

n , whereas n denotes the number of time series in the specific
cluster. This averaging is crucial as otherwise clusters with high n would automatically
result in high RS.

Cluster 6 in Figure 5.1 indicates a special case as it incorporates only one station. The
calculation of the RS becomes meaningless as no cluster representative sV is required and
thus equals zero. The hypothesis of having a superior cluster vindicates with a low RS
as then the prediction misfit is minimized. Since the prediction is solely based on sV , the
grouped time series in this cluster must share great similarity.

The RS per cluster builds the basis for three consecutive quality metrics. This allows to
assess the different cluster composition from a second and more independent perspective
than the one received through the internal CVIs discussed in Section 3.3. Thanks to the
hierarchical clustering method applied in this thesis it is especially inexpensive to create
all the different cluster compositions to cover the entire range of cluster count. With an
increasing number of clusters, the average RS declines as the groups become more specific
and thus lose their generalization that causes misfit. An example of this is shown by
means of a dendrogram with cut point at 15 clusters in the annexed Figure A.7 and as
cluster composition in Figure A.8.

The first independent quality metric is called Mean RS I and averages the RS of all clusters
in a composition. Its formal definition is stated in Equation 5.2, with K representing the
number of clusters in this composition.

Mean RS I =
1
K

K

∑
i=1

RSi (5.2)

3also known as Root-Mean-Square Deviation (RMSD)
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FIGURE 5.2: Cluster Quality Assessment using Mean RS I
Quality assessment using the mean of all cluster’s RS. Since lower RS indicates a smaller
forecasting deviation, superior cluster compositions exhibit rapid reach of the Mean RS I

minimum.

How the Mean RS I evolves per linkage method over increasing number of clusters is
visualized in Figure 5.2. As previously stated, the RS value can be seen as average misfit
between the forecast virtual mean series and the concrete series in the clusters. The lower
this indicator is, the higher the resemblance of the grouped series which is attests high
cluster quality. Mean RS I is thus to be minimized.

Single linkage outperforms the other two linkage methods. Single linkage typically
produces stairs-alike dendrograms whereas very particular data objects are sequentially
aggregated at the upper end closer to the root (see Figure A.5). Lowering the cut-point
in these kinds of hierarchical clusterings separates the most unique data objects at the
beginning as clearly visible in Figure A.6. As a consequence, many clusters bearing only
one series and thus having an RS of zero are created at the beginning which causes the
superior Mean RS I.

The second metric based on the RS is derived from previously described one and thus
called Mean RS II. The motivation for this derivative originates from the situation with
clusters where RS = 0. Mean RS II counteracts this behaviour as it converts the existence
of single-member clusters into a penalty q as formulated in Equation 5.3. This punishing
factor q denotes the number of clusters with only one member. Therewith, the divisor that
downsizes the sum of all RS in a specific cluster composition is weakened by subtracting
it from the total number of clusters K.

Mean RS II =
1

K− q

K

∑
i=1

RSi (5.3)

The effect of this change is shown in Figure 5.3. Single linkage is now clearly outperformed
by the other two linkage methods. However, all of them converge at around 10 clusters. At
this stage, the cluster composition starts to resemble each other irrespective of the linkage.
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FIGURE 5.3: Cluster Quality Assessment using Mean RS II
Quality assessment using the mean of all cluster’s RS, whereas single-member clusters receives

punishment. As usually the greatest decline emerges at the beginning, the focus is set to the
second greatest decline to highlight the elbow.

The second greatest decline in the evolution of the Mean RS II offered to be a useful point
of interest to determine an ideal cluster number as it approximately highlights the elbow.
The greatest and third greatest decline are also marked.

The third and last cluster quality metric is called Lp Norm. The norm of a vector describes
its extension in space which is why it also denoted as vector length (Savov, 2017). The
formal definition is stated in Equation 5.4. Here, a cluster composition x is described as a
vector using the RS of all clusters K. The chosen implementation set p = K.

Lp Norm = ‖x‖p =

(
K

∑
i=1

(RSi)
p

) 1
p

, with p = K (5.4)

The way this index evolves over increasing cluster numbers is shown in Figure 5.4. The
first inflection point of the index evolution is chosen to be an optimal cluster number
indicator.
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FIGURE 5.4: Cluster Quality Assessment using Lp Norm
Quality assessment using the individual RS for a vectorial representation. The length or norm of

this vector serves as a quality factor, whereas lower values mean better clusterings. The first
inflection point highlights the optimal cluster number.
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5.2 Approach Comparison

So far the clustering quality with potential ideal cluster numbers was evaluated between
the different linkage methods. Next, the same assessment is conducted among the different
clustering approaches. The goal is to receive insights about what distance measuring
technique demonstrates superiority in the clustering of water temperature data.

The candidate approaches in this thesis represent three different distance metrics on three
different data aggregation levels which totals in 32 = 9 scenarios. It should be mentioned
that this selection only represents a subset of all the possible clustering approaches espe-
cially under the consideration of all plausible parameter settings. Decisions on parameters
such as the distance function in PDIST, the window size in DTW, or the wavelet in DWT
represent entire subjects of scientific research itself.

To further reduce the combination complexity in the subsequent approach comparison, the
focus is narrowed on one linkage method instead of all three. The process of elimination
relies on the forecast deviation evaluation discussed in the previous section. Namely these
are Mean RS I, Mean RS II, and Lp Norm. Table 5.1 shows the average index value per
clustering approach (first column) and linkage method. Since all three metrics are to be
minimized, the lowest index values are coloured in green while the highest are coloured
red.

Looking at Mean RS I, it is single linkage that performs significantly better compared
to the other two linkages. The reason for this behaviour, as mentioned, lies in the early
sorting of peculiar stations. Complete linkage performs consistently worst, while average
linkage is just slightly better.

Roughly the contrary appears in the Mean RS II column, where the existence of single-
member clusters is penalized. The advantageous conditions single linkage enjoys in
Mean RS I appear as severe disadvantages now. Complete linkage excels here as the
hierarchical aggregation process produces high-level groupings. This barely leads to

Average Mean RS I Average Mean RS II Average Lp Norm
Approach average complete single average complete single average complete single

DTW_daily_w7 1.164 1.476 0.723 1.864 1.80 2.292 2.501 2.573 2.848
DTW_hourly_w24 1.222 1.499 0.823 1.941 1.859 2.437 2.605 2.656 2.981
DTW_10min_w144 1.212 1.500 0.812 1.951 1.86 2.432 2.605 2.657 2.979
DWT_daily_haar_euc 1.344 1.505 1.052 1.711 1.766 1.862 2.497 2.558 2.582
DWT_hourly_haar_euc 1.439 1.538 1.043 1.834 1.832 1.957 2.611 2.615 2.654
DWT_10min_haar_euc 1.394 1.666 0.953 1.958 1.906 1.954 2.712 2.696 2.774
PDIST_daily_euc 1.200 1.440 0.775 1.871 1.786 2.396 2.486 2.530 2.849
PDIST_hourly_euc 1.235 1.520 0.800 1.969 1.887 2.399 2.579 2.638 2.902
PDIST_10min_euc 1.236 1.524 0.800 1.970 1.892 2.399 2.579 2.639 2.903

Total Average 1.272 1.519 0.865 1.897 1.843 2.236 2.575 2.618 2.830

TABLE 5.1: Mean Quality Index per Clustering Approach
Compares the different clustering approaches per linkage method by means of the quality indexes
Mean RS I, Mean RS II, and Lp Norm. The values represent the average index over the evolution

from 2 to 15 clusters. As all three metrics are to be minimized, the lowest value per row and
quality metric is highlight green while the highest is coloured in red.
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single-member clusters at the beginning of the clustering process where the total cluster
number is low. It is also noticeable that average linkage performs nearly identical.

According the Lp Norm it is the average linkage that holistically performs best but di-
rectly followed by complete linkage. This confirms the harmonic influence of a cluster
aggregation strategy based on averages as the consequences of outliers are dulled. As a
conclusion, solely average linkage is used for the final approach comparison.

The scope for the approach comparisons is further narrowed by choosing one out of three
value aggregation levels. The process of elimination is identical to the one applied to the
linkage methods. Table 5.2 shows the average performance per aggregation level and
quality metric. The total average (last row) indicates the identical values as in Table 5.1
because the data set for these calculations remained the same but pivoted.

The aggregation level based on daily values (first row) consistently shows better perfor-
mance over all metrics. This most possibly due to the fact of less noisy data. The level
of detail provided with hourly or even ten-minute values seems to be too high. It is to
remember that the processed timeline extends to 10 years. With a granularity of ten-minute
values, a time series hold 10 ∗ 365 ∗ 24 ∗ 6 = 512′640 data points. Insight creation from such
detailed information can become distracted or washy by noise. Daily mean values seem to
be a better choice in this context. Besides all this, working with a higher aggregation level
reduces the data load significantly and thus increases the performance on calculations.

The evolution of these quality indexes per applied distance measuring strategy is shown
in Figure 5.5. This cross-strategy comparison, however, has some disadvantages that are
discussed in Chapter 6. The remaining clustering approaches, of which all received daily
temperature values as an input, are DTW with a window size of seven days, DWT using
the Haar wavelet to extract the 100 most influential signal components for consecutive
Euclidean distance determination, and lastly, PDIST applying the Euclidean distance
directly on the time series. The points of interest are also highlighted using the minimum
value for Mean RS I, the second greatest decline for Mean RS II, and the first inflection
point for Lp Norm. The complete comparison on average linkage with all data aggregation
levels can be found in the annexe from Figure B.1 to B.7.

Average Mean RS I Average Mean RS II Average Lp Norm
Aggregation Level average complete single average complete single average complete single

daily 1.236 1.474 0.85 1.815 1.784 2.183 2.494 2.554 2.76
hourly 1.299 1.519 0.889 1.915 1.859 2.264 2.598 2.636 2.846
10min 1.281 1.563 0.855 1.96 1.886 2.262 2.632 2.664 2.885

Total Average 1.272 1.519 0.865 1.897 1.843 2.236 2.575 2.618 2.83

TABLE 5.2: Mean Quality Index per Value Aggregation Level
Compares the three value aggregation levels daily, hourly, and ten-minute per linkage method by

means of the quality indexes Mean RS I, Mean RS II, and Lp Norm. The values represent the
average index over the evolution from 2 to 15 clusters. As all three metrics are to be minimized,

the values per row and quality metric are highlighted in green for lowest and red for highest.
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Holistically, one can say that DTW and PDIST exhibit a very similar course of index
evolution in all three quality metrics. Most noticeably is the outburst from this alignment
in Mean RS I between 7 and 11 clusters. Afterwards, PDIST even performs better than
DTW.

DWT on the other hand presents a salient deviation from the others. This can be explained
by the fact that this feature-based distance measurement strategy is conceptually different
compared to the two shape-based strategies DTW and PDIST. In both Mean RS I and II,
DWT reaches the point of interest very early at a cluster number of five.

All three approaches behave more or less equally in the Lp Norm, which decreases the
ability to extract valuable insights. It is to remember, however, that this norm helped to
decide on the prior linkage limitation.

Overall one can conclude three things. First, DTW does not outperform the more trivial
strategy of PDIST to a remarkable extend. The application of DTW should therefore be
carefully reconsidered, at it requires a higher computational effort to conduct. The second
conclusion to be drawn refers to the cluster numbers. The point of interest in all three
metrics lies somewhere between five and eleven clusters. This evidence can be used to
contain the range for the true cluster number which might be helpful for later subject-
specific analyses in the field of hydrology. Lastly, DWT demonstrated that a competitive
clustering also can be established with a reduced amount of information. Good results do
not automatically come with more data, in fact, noise starts to spread which may worsen
the outcome.
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FIGURE 5.5: Approach Comparison
Shows the three distance measuring strategies DTW, DWT, and PDIST in comparison. For sake of
readability, only the clustering approaches based on daily values and average linkage are shown.
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6 Discussion

The work presented in this thesis persuaded the goal of grouping water temperature
metering stations by means of resulting time series data. The characteristics and analysis
methods of time series were elaborated. The actual grouping was performed using the
statistical PR approach of hierarchical clustering with three different distance measurement
strategies and linkage methods. The resulting cluster compositions were assessed using
internal CVIs. These compositions resulted from the various clustering approaches using
the different distance measurement strategies with input data on different aggregation
levels. Finally, a selected subset of the applied approaches was compared by analysing the
forecast deviation with the help of three different metrics that are based on these residuals.

A first point to be reconsidered is that the presented work did not cluster water bodies
but water temperature data mined at FOEN metering stations on strategically interesting
locations on water bodies. Differentiation is crucial here as the thermic insights received at
a metering station does by no means necessarily represent the entire or partial water body.
The annexed Figure A.2 supports this claim as it shows the temperature heterogeneity
that can exist in a rather close area of a water body. It results that cluster allocation of a
metering station may drastically be influenced by the choice of its location. However, the
FOEN has great interest to position these stations in order to maximise the water body
representativeness.

A second discussion point regards the conducted approach comparison. The method
of using the residual scores from the forecast deviation is from a statistical perspective
slightly misleading. The temperature prognosis that acted as a reference to determine the
RMSE per time series in a cluster was solely constructed by averaging the first 2⁄3 of these
cluster members. The average cycle of this reference is then perpetually continued for the
last 1⁄3 where total misfit (RS) compared to all cluster members is calculated. The cluster
compositions created using DTW is by design disadvantaged in this quality assessment.
DTW is more likely to group metering stations that exhibit a time-shift in their temperature
series than PDIST. An extreme example would be two stations that exhibit a shift by a
half phase in their recorded time series. The PDIST approach, on the other hand, does
not address time lags at all. Therefore, PDIST would rather allocate these non-linearly
shifted series into different clusters. This is an unfair advantage compared to DTW as
PDIST will generally yield a better RMSE value. Therefore, the shown comparison should
strictly speaking only be conducted between approaches with identical distance measuring
strategies.
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In order to build a statistically more representative approach comparison, the use of an
external CVI is indispensable. It would also allow comparing approaches among different
distance measuring strategies. An external CVI requires a manual cluster composition
performed by humans with high-level of domain knowledge that could serve as a ground
truth. Consequently, one could compare all the generated clustering from all kinds of
approaches with this single ground truth in order to declare a superior technique. The
crux in this methodology, however, is that this human-generated ground truth will be the
leading force in the nomination process of a superior clustering. This intersects with the
conception that computational pattern discovery algorithms should provide humans with
new insights.

Several points could be addressed in future work. The results have shown that the
underlying data is likely to be noisy. Therefore, it would be interesting to conduct the
same clustering approach but with high data aggregation levels (e.g. weekly or monthly).
This might be especially helpful when clustering periods that exceed a period of ten years.
One could even try to work with semi-annual or annual data when focusing on periods
that extend over multiple decades. Furthermore, one could subdivide the periods into
shorter sequences and address them separately with the same data set. This would allow
to observe how the time series may become grouped with different companions over
the course of these two subsequent periods. Finally, one could extend the repertoire of
distance measuring strategies to the area of structural PR recognition.

The project initiated by the FOEN is still ongoing and further distance metrics for time
series will be evaluated. Hence, it is too early to deliver a distinct recommendation
for the best clustering technique to be applied. However, this thesis allowed to gain
first experiences regarding advantages and disadvantages of the elaborated strategies
and produced a Python library which can be applied to conduct and parametrise the
same cluster analyses with the data received from cantonal metering stations. Together
with the explanations provided in this work, it supports the process of finding an ideal
prioritization regarding the incorporation of cantonal metering stations into the federal
network.
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FIGURE A.1: Geo-Referenced FOEN Metering Stations
This map shows the location of 60 FOEN metering stations in Switzerland. The elevation from sea
level is illustrated using a green-to-yellow fade, whereas green implicates a low-lying location.
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ID Name Starting Year Elevation (m) Glaciation (%)
2009 Rhône - Porte du Scex 1974 377 11.1
2016 Aare - Brugg 1974 332 1.5
2018 Reuss - Mellingen 1974 345 1.8
2019 Aare - Brienzwiler 1974 570 15.5
2030 Aare - Thun 1971 548 6.9
2034 Broye - Payerne, Caserne d ’aviation 1976 441 0.0
2044 Thur - Andelfingen 1974 356 0.0
2056 Reuss - Seedorf 1974 438 6.4
2068 Ticino - Riazzino 1977 200 0.1
2070 Emme - Emmenmatt, nur Hauptstation 1976 638 0.0
2084 Muota - Ingenbohl 1974 438 0.0
2104 Linth - Weesen, Biäsche 1974 419 1.6
2109 Lütschine - Gsteig 1986 585 13.5
2112 Sitter - Appenzell 2005 769 0.1
2126 Murg - Wängi 2002 466 0.0
2130 Rhein (Oberwasser) - Laufenburg 1971 299 1.1
2135 Aare - Bern, Schönau 1974 502 5.8
2143 Rhein - Rekingen 2003 323 0.4
2150 Landquart - Felsenbach 2003 571 0.7
2152 Reuss - Luzern, Geissmattbrücke 1973 432 2.8
2159 Gürbe - Belp, Mülimatt 2006 522 0.0
2161 Massa - Blatten bei Naters 2003 1’446 56.5
2167 Tresa - Ponte Tresa, Rocchetta 2002 268 0.0
2179 Sense - Thörishaus, Sensematt 2003 553 0.0
2210 Doubs - Ocourt 2002 417 0.0
2243 Limmat - Baden, Limmatpromenade 2002 351 0.7
2256 Rosegbach - Pontresina 2004 1’766 21.7
2265 Inn - Tarasp 2016 1’183 3.5
2269 Lonza - Blatten 1986 1’520 24.7
2276 Grosstalbach - Isenthal 2004 767 6.7
2307 Suze - Sonceboz 2004 642 0.0
2308 Goldach - Goldach, Bleiche, nur Hauptstation 2004 399 0.0
2327 Dischmabach - Davos, Kriegsmatte 2004 1’668 0.7
2343 Langeten - Huttwil, Häberenbad 2002 597 0.0
2347 Riale di Roggiasca - Roveredo, Bacino di compenso 2003 980 0.0
2351 Vispa - Visp 2002 659 23.1
2366 Poschiavino - La Rösa 2004 1’860 0.0
2369 Mentue - Yvonand, La Mauguettaz 2002 449 0.0
2372 Linth - Mollis, Linthbrücke 1974 436 2.9
2374 Necker - Mogelsberg, Aachsäge 2007 606 0.0
2386 Murg - Frauenfeld 2006 390 0.0
2392 Rhein (Oberwasser) - Rheinau 1974 353 0.6
2410 Liechtensteiner Binnenkanal - Ruggell 1999 435 0.0
2414 Rietholzbach - Mosnang, Rietholz 2002 682 0.0
2415 Glatt - Rheinsfelden 1976 336 0.0
2433 Aubonne - Allaman, Le Coulet 2010 390 0.0
2434 Dünnern - Olten, Hammermühle 2013 400 0.0
2457 Aare - Ringgenberg, Goldswil 1980 564 12.1
2473 Rhein - Diepoldsau, Rietbrücke 1984 410 0.7
2481 Engelberger Aa - Buochs, Flugplatz 1983 443 2.5
2485 Allaine - Boncourt, Frontière 2002 366 0.0
2493 Promenthouse - Gland, Route Suisse 2011 394 0.0
2500 Worble - Ittigen 1988 522 0.0
2604 Biber - Biberbrugg 2002 825 0.0
2608 Sellenbodenbach - Neuenkirch 2003 515 0.0
2612 Riale di Pincascia - Lavertezzo 2004 536 0.0
2613 Rhein - Weil, Palmrainbrücke 1995 244 1.0
2617 Rom - Müstair 2002 1’236 0.0
2623 Rhone - Oberwald 2003 1’368 19.3
2635 Grossbach - Einsiedeln, Gross 2012 942 0.0

TABLE A.1: Metering Stations
Listing of the 60 FOEN stations which provided temperature data as data basis for this thesis.

However, the stations 2265, 2433, 2434, 2493, and 2635 were excluded during the analyses as the
recorded data does not span over the defined time period starting in 2009.

https://www.hydrodaten.admin.ch/en/2009.html
https://www.hydrodaten.admin.ch/en/2016.html
https://www.hydrodaten.admin.ch/en/2018.html
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FIGURE A.2: Thermal-Infrared Orthofotomosaic
Thermal image revealing the temperature heterogeneity existing in rather close area of two

different water bodies. The images were recorded on March 22, 2020 in Aeschau (left) and Eggiwil
(right), Switzerland. Groundwater exfiltration or the inflow of lower tempered water may causes

this. (Image by © Ecohydrology Research Group ZHAW )

https://www.zhaw.ch/en/lsfm/institutes-centres/iunr/ecosystems-and-biodiversity/ecohydrology/


Appendix A. Metering Stations 47

21
61

26
23

22
69

22
56

23
66

23
27

23
47

22
76

26
17

20
19

21
09

23
51

21
50

20
56

20
09

20
84

24
81

23
72

23
08

21
79

23
69

26
08

20
44

20
34

22
10

21
59

23
86

21
26

26
12

24
14

21
12

20
70

26
04

23
74

24
85

24
57

25
00

23
43

24
73

20
68

23
07

24
10

21
67

21
04

20
30

21
35

24
15

23
92

21
43

22
43

21
52

20
18

20
16

21
30

26
13

Series

0

1000

2000

3000

4000

5000

6000

7000

Di
ss

im
ila

rit
y

2009-01-01 to 2018-12-30, 10min values, 55 series
Approach: DTW (window size = 144)

Dendrogram (linkage = average, clusters = 6)

FIGURE A.3: Dendrogram using Average Linkage (6 Clusters)
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FIGURE A.5: Dendrogram using Single Linkage (6 Clusters)
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FIGURE A.7: Dendrogram using Complete Linkage (15 Clusters)
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FIGURE B.1: Approach Comparison using Calinski-Harabasz Index
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FIGURE B.2: Approach Comparison using Davies-Bouldin Index
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FIGURE B.3: Approach Comparison using Dunn Index
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FIGURE B.4: Approach Comparison using Silhoutte Index
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FIGURE B.5: Approach Comparison using Mean RS I
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FIGURE B.6: Approach Comparison using Mean RS II
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FIGURE B.7: Approach Comparison using Lp Norm
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FIGURE B.8: Cluster Validity Indices Comparison (daily values)
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FIGURE B.9: Cluster Validity Indices Comparison (hourly values)
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FIGURE B.10: Cluster Validity Indices Comparison (10min values)
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