
Zurich

MASTER THESIS

Assessing RISC Zero using ZKit:

An Extensible Testing and Benchmarking

Suite for ZKP Frameworks

Author:
Roman BÖGLI

Supervisors:
Dr. Angelo DE CARO

Dr. Kaoutar EL KHIYAOUI

Academic Supervisor:
Dr. Alexandru CARACAS

Examiner:
Dr. Thorsten KRAMP

A work submitted in fulfillment of the requirements for the degree of
Master of Science in Engineering in Computer Science (MSE CS)

at the

Institute for Network and Security (INS),
Departement of Computer Science,

Eastern Switzerland University of Applied Sciences (OST)

in collaboration with the

Security Department at IBM Research Zurich.

January 23, 2024

i

Abstract

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols designed to verify a statement
without disclosing any information beyond its boolean verification outcome. A prevalent
use case for such protocols resides in the realm of digital cash, where payers whish to prove
the validity of a token without disclosing any specification about the token in particular to
uphold privacy. Numerous ZKP software libraries or frameworks have emerged to enhance
accessibility for developers and encouraging the widespread adoption of this technology in
practical applications.

The thesis introduces the readership to ZKPs, elucidating their fundamental attributes
and delving into two key implementation families — namely, Succinct Non-Interactive
Argument of Knowledge (SNARK) and Scalable Transparent Argument of Knowledge
(STARK) systems. Our emphasis is on the latter, given its perceived post-quantum security.
Furthermore, we provide an overview of promising STARK-based ZKP frameworks and
discuss their distinguishing features.

One of such frameworks is RISC Zero, which facilitates verifiable general-purpose compu-
tations in zero-knowledge through its virtual machine. Essentially, it proves statements
indirectly by proving the integrity of all chronologically recorded register states throughout
a computational process. We elucidate its internal mechanisms and assess its efficiency by
examining two different disciplines. The first involves proving a preimage to a hash value.
The second entails proving the membership of a data leaf within a Merkle tree, also known
as inclusion proofs (IP).

To streamline systematic analysis, we present the concept of ZKit, an extensible test and
benchmark suite designed to accommodate diverse ZKP frameworks. ZKit enables the
orchestration of activities through a command line interface and incorporates a suggested
information exchange format for IPs. Additionally, it demonstrates the process of porting
ZKP functionality defined in the Rust programming language to Go.

We utilize ZKit to benchmark RISC Zero across various settings and workloads. Our results
reveal that generating a single STARK proof for a batch of IPs can be up to 3.9 times more
efficient than proving each IP individually. Verifying such batch proofs can even offer a
performance improvement of up to 14 times. The thesis concludes by discussing key insights
gained during the research process and summarizes the implications of the findings.

Keywords: Zero-Knowledge Proof · Inclusion Proof · STARK · RISC Zero · Benchmark

ii

Declaration of Authorship
I, Roman BÖGLI, declare that all material presented in this paper is my own work or fully
and specifically acknowledged wherever adapted from other sources. I understand that if at
any time it is shown that I have significantly misrepresented material presented here, any
degree or credits awarded to me on the basis of that material may be revoked. I declare that
all statements and information contained herein are true, correct and accurate to the best of
my knowledge.

iii

Foreword

This thesis constitutes the final work of my Master of Science in Engineering, focusing on
Computer Science, at the Eastern Switzerland University of Applied Sciences (OST). In
the pages that follow, the term «we» is employed to convey a collaborative and inclusive
tone, symbolizing the shared journey between the author, his supervisors, and the research
presented in this thesis.

I deeply value the diverse experiences and knowledge gained throughout this study pro-
gram, reflecting on this period as a truly enriching journey. Thus, I would like to take the
opportunity to express my gratitude and extend heartfelt thanks to all those who have
contributed to and supported me during this journey.

First and foremost, I would like to thank Dr. Alexandru Caracas, Dr. Angelo De Caro, and Dr.
Kaoutar El Khiyaoui for their invaluable supervision throughout this thesis. Collaborating
with you has been a pleasure, and I have truly appreciated the constructive discussions we
engaged in. Also, I thank Dr. Thorsten Kramp for his willingness to serve as an examiner
for this thesis.

Additionally, my gratitude extends to Dr. Nathalie Weiler for her prized support throughout
the main course of my studies and for proposing the interesting opportunity to collaborate
with IBM Research Zurich.

Many thanks go to my former teacher, Stefan Rey, for introducing me to the world of
programming years ago, thereby playing a key role in shaping my academic path. I also
want to express my appreciation for the invaluable support from the Swiss Study Foundation
throughout this journey and the Werner Siemens Foundation for their generous fellowship.

Lastly, I want to extend my sincere thanks to my beloved partner for graciously accepting
and supporting the numerous hours I spend immersed in my passion for computers.

https://www.studyfoundation.ch/
https://www.wernersiemens-stiftung.ch/en/

iv

Contents

Abstract i

Declaration of Authorship ii

Foreword iii

1 Introduction 1
1.1 Background and Motivation . 2
1.2 Contribution . 3
1.3 Related Work . 3
1.4 Outline . 4

2 Zero-Knowledge Proof Systems 5
2.1 Characteristics . 5
2.2 Implementations . 7

3 Risc Zero Framework 12
3.1 RISC-V Instruction Set Architecture . 12
3.2 Proving & Verifying Process . 13

4 ZKit Test and Benchmark Suite 17
4.1 System Architecture . 17
4.2 CLI Functionalities . 21
4.3 Extensibility . 26

5 Benchmark Results 28
5.1 Setting . 28
5.2 Preimage . 29
5.3 Inclusion Proof . 32

6 Discussion 38

7 Conclusion 40

Bibliography 41

List of Abbreviations 45

List of Figures 46

List of Tables 47

1

1 Introduction

In the realm of digital money, a common use case involves proving the membership of a
coin or token within a publicly accessible set of valid coins. The authority responsible for
issuing or minting these valid coins establishes this set, for example, using a Merkle tree
data structure [1]. To demonstrate the inclusion of a specific coin in this set, a prover P
provides an authentication path or Inclusion Proof (IP), which is a list of hash values or digests
from the tree’s leaf to its root. The verification process involves verifier V hashing the leaf
data, appending the next digest to the result, and repeating this step until processing all
elements in the authentication path. V is convinced of the coin’s inclusion in the set when
the final digest matches the publicly known root hash of the Merkle tree. Bitcoin [2], for
instance, incorporates this mechanism into its Simple Payment Verification (SPV) process or
verifying transaction inclusion in its underlying blockchain.

While the above described method is considered an easy-to-implement and efficient way
to demonstrate an item’s inclusion in a set, it necessitates revealing the particular item in
question. In the context of digital money, however, this contradicts with upholding user
privacy. In other words, P should be able to convince V that a given coin belongs to a set of
valid coins without disclosing the specific coin’s identity.

The emerging field of Zero-Knowledge Proof (ZKP) protocols serves as a solution to this
problem. Previous to this work, we investigated existing software libraries or frameworks
that help to generate and verify ZKPs [3]. In this work, the attention centers on one specific
framework called RISC Zero or risc01. It enables verifiable general-purpose computations
in zero-knowledge through its Virtual Machine (VM), which emulates a reduced Instruction
Set Architecture (ISA). This so-called Reduced Instruction Set Computer (RISC) apparently
inspired the framework’s naming.

The reason for focusing on risc0 in this thesis is twofold. First, it allows to specify circuits
or proof logic natively using Rust, which leverages the ease to develop custom ZKPs. Second,
it implements the Scalable Transparent Argument of Knowledge (STARK) protocol which, in
contrast to Succinct Non-Interactive Argument of Knowledge (SNARK) systems, does not require
a trusted setup and is post-quantum secure.

1 See RISC Zero homepage for details.

https://www.risczero.com/

Chapter 1. Introduction 2

1.1 Background and Motivation

The internet has become an integral component of everyone’s life today. The number of
business models operating through the World Wide Web continues to grow, expanding user
dependency accordingly. Not surprisingly, the progress of digitalization has profoundly
impacted the most fundamental tool in society – money. From barter systems to precious
metal coins, then to paper securities, and now evolving into digital information, money has
undergone significant transformations throughout its long history. At least since the intro-
duction of Bitcoin in 2008 [2], an electronic coin that serves as an alternative to conventional
money, central banks have progressed to digitalize or tokenize cash.

While established and field-tested cryptographic primitives enable the development of such
Central Bank Digital Currency (CBDC) securely, it remains challenging to maintain the same
level of privacy that exists in physical cash transactions. Like banknotes, users must be
able to verify the validity of tokens and that they have not spent previously. In the case of
physical cash, the latter is ensured automatically through its physical handover from payer
to payee. Although validating the authenticity of physical cash is more complex, embedded
security features2 make accurate counterfeiting nearly impossible.

Avoiding to spend cash more than once in the digital word, however, poses a totally different
challenge due to the minimal replication costs of digital information. Bitcoin solved this
double-spending problem using a distributed public ledger, allowing everyone to oversee
every transaction. However, this solution comes with tradeoffs in efficiency and privacy
due to redundant computations and pseudo-anonymity, respectively. While CBDC might
adopt a decentralized architecture, its goal is to uphold privacy levels akin to physical cash.
In either case, verifying a token’s validity or single-spend condition remains paramount in
digital cash.

A promising tool to fulfill these requirements are ZKPs. For example, a depositor could
prove to a bank that a token stems from a valid (public) set of tokens without specifying
which token exactly. This would uphold the depositor’s privacy and consequently avoids
traceability. While the theoretical underpinnings of ZKP systems enjoyed increasing at-
tention in recent decades, their employment in practice remains in its nascent stages. A
reason for this lies in the high complexity of ZKPs, making them challenging to implement
accurately which in turn hinders widespread adoption.

Luckily, numerous software libraries and frameworks now facilitate the implementation
of ZKP. While this is a welcomed development, it introduces new challenges as each
framework adopts different paradigms or techniques to formulate, produce, and verify such
proofs. Even more critical is the specification of zero-knowledge circuits as there exists no
unified format to do so. Consequently, understanding the advantages and disadvantages
of these frameworks, let alone creating comparable benchmarks, becomes increasingly
challenging. This, in turn, impedes informed decision making.

2 For instance, see explantory video on the security features of the Swiss banknotes.

https://youtu.be/cpG8SX6SmvA?si=XZMsUb2p7btNv1Vj

Chapter 1. Introduction 3

We anticipate further progress in creating ZKP software libraries that are ready-to-use, have
undergone cryptographic audits, and promote intuitive interfaces. The efforts in this thesis
are dedicated to these advancements.

1.2 Contribution

This thesis summarizes the most important properties of ZKPs and highlights the key
differences between two famous implementation families, namely SNARK and STARK
systems. Also, we provide a summary of promising software libraries or frameworks that
help to create and verify ZKPs.

Next, we analyze risc0 in detail using the above-addressed use case of an IP, i.e., proving a
the inclusion of leaf in a Merkle tree data structure. Therefore, we propose the concept of
ZKit, an extensible toolkit for testing and benchmarking various ZKP frameworks. Besides
a Command Line Interface (CLI) to execute parameterized benchmarks or generate Merkle
tree test data, it also contains functionality to define and exchange IPs in a unified way.

Furthermore, ZKit exemplifies how ZKP circuits written in Rust can be ported to the Go3

ecosystem through a wrapper library. This portability facilitates the integration of ZKPs in
existing Go projects such as for example the Fabric Token-SDK (FTS)4.

Last but not least, we share our risc0 benchmark results on IPs in two different settings.
In the first setting, we measured the performance and allocated resources to create one
proof for a single IP. In the second setting, we aggregate or batch multiple IPs in a single
proof. We compare and interpret the results of these two settings at the end and state our
recommendations that we drew from it.

1.3 Related Work

In 2020, Benarroch et al. [4] stressed the importance of comparing ZKP frameworks using
benchmarks. Among others, they highlighted the value of performing IP, or set membership
as they term it, in a zero-knowledge context.

Gong et al. [5] focus on the theoretical distinctions among four popular ZKP schemes,
including SNARK and STARK. Their motivation is to equip parties interested in this field
with a comprehensive understanding of the strengths and weaknesses inherent in each
scheme.

Polybase Labs [6] maintains a comparison website showing where they compare their own
framework alongside four others, including risc0. Besides insights about time, memory,
and proof size, they also indicate the incurred dollar costs from running these benchmarks
on commercial cloud infrastructure. While ZKit adopts their approach to measure memory
consumption, we follow a more modular system architecture to minimize redundancy. Also,
the CLI contained in ZKit facilitates the (local) benchmark execution.

3 An statically typed programming language with concurrency support developed by Google, making them
ideal for scalable (distributed) applications. See Go homepage for details.

4 A toolkit for the modular blockchain framework Hyperledger Fabric. See GitHub repository.

https://go.dev/
https://github.com/hyperledger-labs/fabric-token-sdk

Chapter 1. Introduction 4

The zk-benchmarking project [7] maintains a test suite that also pursues the standardized
framework comparison goal. While test results exist for successive hashing, results for
IP use cases are still in progress. Their uniform approach to instantiate benchmark jobs
was adopted in ZKit but expanded to include additional measurable metrics, such as peak
memory consumption.

Ernstberger et al. [8] introduced a configurable benchmarking framework focusing on
SNARK-based libraries named zk-Bench. As our work, they focused on a modular system
architecture to facilitate continuous extensibility efforts. A similar SNARK-oriented project
is maintained by the zk-Harness [9]. The project zkp-compiler-shootout [10] also encompasses
STARK-based frameworks, albeit with a specific emphasis on runtime durations. Celer [11]
analyzes the performance and resource consumption of a single preimage use case with
seven different ZKP frameworks.

Overall, a collective effort is underway to develop tools tailored for handling and comparing
the heterogeneous array of ZKP frameworks. While this thesis contributes to this effort,
it stands out with distinctive features such as a user-friendly CLI, a system architecture
designed for extensibility, and a proof of concept for porting functionality to Go. With the
first integrated ZKP framework being the risc0, we highlight its practicality and underscore
the potential of general-purpose verifiable computations executed in a VM and proven
through the transparent and quantum-safe STARK system.

1.4 Outline

The rest of this work is structured as follows. Chapter 2 defines the most essential properties
of ZKP systems and highlights the key differences between SNARK and STARK systems.
Chapter 3 provides an overview of the risc0 framework. After an introduction to their
VM-based proving paradigm that is based on the reduced ISA called RISC-V, we explain
the actual proving and verifying procedure and its involved information. In Chapter 4, we
declare the chosen system architecture of ZKit and discuss its main functionalities as well
as strategies for extensibility. Chapter 5 presents and summarizes our benchmark results
with risc0 and interprets them. Finally, we discuss our lessons learned as well as future
work in Chapter 6 and conclude with the key insights of this thesis in Chapter 7.

5

2 Zero-Knowledge Proof Systems

This chapter discusses ZKP systems in general. The theoretical concepts were introduced in
the early 90s by Goldwasser, Micali, and Rackoff [12], Blum, Feldman, and Micali [13], and
Goldreich, Micali, and Wigderson [14]. Quisquater et al. [15] introduced the famous and
intuitive ZKP analogy known as «Ali Baba Cave».

For a start, we summarize the essential theoretical attributes that help characterize the
quality of these systems. This is followed by a high-level primer on the inner workings of
STARK protocol. Furthermore, we introduce our differentiation between direct and indirect
proving approaches. Besides stating the motivation behind these two different approaches,
we also provide a summary of promising existing STARK-based ZKP frameworks.

2.1 Characteristics

This section revisits the defining properties of ZKP systems, which are essential for evaluat-
ing their characteristics. The content presented in this section originates from our previous
work [3, Chapter 3.1] and is replicated to ensure completeness and clarity for the readership.
Interested readers are referred to Thaler [16], who explores the theoretic aspects of ZKPs in
greater detail.

A proof system defines how P proves the validity of S to V in a verifiable manner. Ideally,
valid proofs always succeed in this verification process while invalid proofs can always be
disclosed as such and consequently be rejected. Generally speaking, one considers a proof
zero-knowledge when V solely learns the boolean outcome of the verification process but
nothing else.

Let S be the statement «I know that x = 10 for 13x ≡ 2262 (mod 7919) is valid». Here, x
represents the witness of S . A trivial proving strategy would involve simply disclosing x
such that V can validate S directly. Large or secret x as well as computationally expensive
validation operations, however, ask for different proving strategies that function with partial
or even non-disclosure of x. Meanwhile, the ability to convince V remains equally important.
ZKP are such non-trivial proof systems.

Chapter 2. Zero-Knowledge Proof Systems 6

Describing Properties

ZKP systems exhibit three central properties, as shown below. In order to address these prop-
erties, certain cryptographic assumptions apply. This includes, for example, the existence of
secure hash functions or the hardness of the so-called Discrete Logarithm Problem (DLP)1.

• Complete: When every valid proof generated by an honest P over a true S convinces
V then one considers this system as complete. In other words, completeness describes
the property that V will always be convinced when presented with a truthful proof.

• Sound: Proof systems that are sound ensure the property that incorrect proofs or correct
proofs of a false S always fail to convince V . More specifically, one speaks of statistical
or information-theoretic soundness when this property holds against a computational
unbounded P . Otherwise, the term computational soundness applies.

• Zero-Knowledge: A proof that does not disclose any information about its witness
while upholding the ability to convince V is said to be a ZKP. In other words, V should
not learn anything but the boolean outcome of the proof verification process.

Two further properties of proof systems describe the level of interaction between P and V
in order to end up with a complete and sound proof outcome. One distinguishes between
protocols that prescribe active communication and ones that do not, as stated below.

• Interactive: Interactive proof systems require live communication between P and V in
the context of repeated challenge-response rounds with random variables.

• Non-Interactive: When V can verify a proof without the need to exchange messages
with P , one speaks of non-interactive proof systems. This is especially powerful as
proving and verifying can be performed independently from each other without any
form of required dialogue.

Generally, every interactive system can be transformed into a non-interactive one using the
Fiat-Shamir transformation [18] in the so-called Random Oracle Model (ROM). It assumes that
both P and V have access to a random function h, which for an input x deterministically
returns a random value h(x) = y. In practice, h is usually a cryptographic hash function.

The core of back-and-forth communication in interactive protocols lies in the randomly
chosen challenges to which only an honest P can consistently respond successfully in
the long run. To transform such protocols into non-interactive ones, P simulates the
challenges by prompting h for random challenges. All prompts inside this ROM will be
embedded in the proof such that V can verify the integrity of these prompts at any later
point in time non-interactively. The security model holds as it would be unfeasible for a
computationally bounded P to use h in a self-serving manner facilitating the task to generate
proofs dishonestly.

Last but not least, proof systems also differentiate themselves from each other based on the
following two remaining properties.

1 DLP states that finding x for a given b in ax ≡ b mod p is disproportionately harder than finding b for a
given x [17].

Chapter 2. Zero-Knowledge Proof Systems 7

• Succinct: A protocol that results in proof size and verification time that grows sub-
linear to the size of the statement being proven while upholding the security level is
considered succinct. However, other definitions exist where authors associate succinct-
ness with polylogarithmic or quasilinear growth.

• Transparent: Proof systems that do not require a trusted setup are considered trans-
parent. For example, a trusted setup exists when the public parameters of the proof
system are generated as a function of secret trapdoor. In cryptography, a secret trap-
door refers to piece of privileged knowledge2 that facilitates access to restricted or
secure functionalities.

Argument vs. Proof of Knowledge

There exists a slight but important difference in the quality of a system that aims to convince
V that P knows a valid witness. This difference is addressed below.

• Argument of Knowledge: In an argument of knowledge system, P is known to be com-
putationally bounded and thus only able to create proofs that rely on polynomial-time
complexity. This allows V to assume that the underlying cryptographic assumptions
hold. In other words, there is no way for a computationally bounded P to convincingly
prove knowledge of x without actually knowing x. A computationally unbounded P ,
however, could break the underlying cryptographic assumptions and thus generate
convincing proofs without actually knowing a valid witness. Argument of knowledge
systems are also known as argument systems or computationally bounded proof systems.

• Proof of Knowledge: A proof of knowledge, on the other hand, represents a stronger
proving mechanism than an argument of knowledge since a computationally un-
bounded P would still fail to convince V with dishonest proofs despite the ability
to break cryptographic assumptions. It follows that proof of knowledge systems
possess higher security than argument systems, although the latter is more common
in practice.

For the sake of simplicity, we continue to primarily utilizes the term proof systems in this thesis
for both types of systems and uses the explicit specification where contextually meaningful.

2.2 Implementations

This section provides an overview of how ZKPs can be implemented using software. After
briefly revisiting the STARK proving mechanics on a high level, we illustrate what we call
the direct and indirect approach to implement this.

Two common categories or families of succinct ZKP systems encompass SNARK [19] and
STARK [20] systems. In reality, the spectrum of different ZKP systems is more complex and
out of scope for this thesis. We recommend the works by Ben-Sasson [21] and Tran [22] for
more detailed insights into the classifications of such systems. For the sake of completeness,
we summarized the key differences between SNARKs and STARKs in Table 2.1.

2 Secret information generated during the setup phase of a cryptographic system that later could enable a
potential adversaries to compromise the system’s integrity is also known as toxic waste.

Chapter 2. Zero-Knowledge Proof Systems 8

Aspect SNARK STARK

Proving complexity O
(
n ∗ log(n)

)
O
(
n ∗ logc(n)

)
Verifying complexity O

(
1
)

O
(
logc(n)

)
Proof size O

(
1
)

O
(
logc(n)

)
Setup trusted transparent

Post-quantum insecure secure

TABLE 2.1: Key Differences between SNARK and STARK
Shows the complexity aspects in relation to input size n [23]. Here, c represents a constant which results in

poly-logarithmic growth in the case of STARK. One also refers to the proof size as communication complexity since it
must be shared or communicated to V .

STARK Primer

As stated earlier, the focus of this thesis is STARK proofs. The rationale behind this choice
is due to two attractive properties. First, they do not require a trusted setup and are thus
deemed transparent. Second, they only rely on secure cryptographic hash functions, which
qualifies them as post-quantum secure 3.

In order to create a STARK proof for S with secret inputs x, P describes S through con-
straints that apply to all valid x. For example, let S = «I know the start of a Fibonacci sequence
(x0, x1) s.t. a1000 = A»4. One distinguishes two constraint types:

• Boundary Constraints: Define the starting and ending conditions of a computation.
This is crucial to enforce certain input and output values. Considering the Fibonacci
example above, we have the starting conditions (1) a0 = x0 and (2) a1 = x1. In the end,
a valid result is constrained by (3) a1000 = A. This totals to three boundary constraints.

• Transition Constraints: Define all valid or legitimate transitions from one state n to the
next state n + 1. This enforces the desired relation between input and output values
of a computation. In the Fibonacci example, the only transition constraint existing is
defined as an + an+1 = an+2, stating that every next element must be the sum of the
previous two elements.

P executes the computations of S once to create a so-called trace or execution table, i.e., a
detailed record of every involved register (columns) during the course of execution (rows)
of the given computation represented as finite elements on a prime field. P extends the
trace by evaluating an interpolated polynomial on a much larger domain, resulting in a
Reed-Solomon code5 for the trace.

Ben-Sasson et al. [20] defined this trace extension by means of a so-called blow-up factor
k. Large k increases the prover complexity but reduces the verification effort for a given
security level, and vice-versa [16]. The extended trace table and the identified constraints
together are also known as Algebraic Intermediate Representation (AIR) of S . Honest P will
satisfy all constraints at any stage in their trace table.

3 Also termed a weak cryptographic assumption since such hash functions are readily available. On the other
hand, strong assumptions hinge on intractable problems, which erodes confidence in a system’s security.

4 The Fibonacci sequence is defined as an = an−1 + an−2.
5 Error-correcting codes, named after their founders Reed and Solomon [24], that add redundancy through

polynomial-based techniques to facilitate error detection and correction.

Chapter 2. Zero-Knowledge Proof Systems 9

For mathematical and computational purposes, all constraints will be transformed into
polynomials. For instance, the boundary constraint (1) a0 = x0 becomes P1(x) = a0− x with
P1(x0) = 0. This transformation enables validation of constraint satisfaction by ensuring
that all constraints evaluate to zero. It is important to note that all constraints that define
any valid x to S are public knowledge and must also be known by V .

P then linearly combines the constraint-derived polynomials in a so-called Compositional
Polynomial (CP). By successively applying a set of mathematical operations6 on the CP, P
halves its degree until the point where the polynomial becomes a constant. P commits
to every intermediate result using a Merkle tree. The same commitment scheme was also
performed for the extended trace and the derived CP beforehand and all root hashes are
sent to V .

The verification process contains two parts. First, V validates the correctness and com-
pleteness of the underlying constraint system, i.e. verifying whether one talks about the
same S . Given this is the case, P is repeatedly asked to decommit certain values, allowing
V to validate the computations that should lead to a constant. V will be convinced after
statistically enough challenge rounds. As mentioned before, this protocol can be employed
non-interactively using the Fiat-Shamir transformation in the ROM.

Direct vs. Indirect Proving Approaches

While the constraints in the above-mentioned Fibonacci example are rather trivial, this is
not the case in more realistic ZKP use cases. In fact, the direct encoding of S as AIR can be
extremely challenging. The reason for this lies in its individual character and the complexity
to drive a correct and sound AIR from a given problem. Also, the individual character of
AIRs aggravates reusability. Small changes to the underlying problem can necessitate major
adaption in its AIR, which induces higher development costs. And even when a thorough
encoding has been found, it may have significant implications on performance.

For clarity reasons, we state the following notation. Once more, let S = «I know a secret ω

s.t. for public input x, f (x, ω) = 0. We use the terms executing or computing S to refer to the
evaluation of f (x, ω), while proving corresponds to the generation of the ZKP of S . The
specification of f , in that case, is what we denote as proof logic, as it defines the underlying
logic for whatever needs to be proven.

In 2014, Ben-Sasson et al. [19] proposed an alternative to this direct approach by employing
a RISC architecture as VM. Here, the computations of S are executed inside the VM. This
VM serves as the execution environment for the proof logic, i.e., the circuits defining S .
The transitions between the (virtual) machine states is dictated by its ISA, which effectively
functions as a set of constraints. The history of all states exhibited during a computation
serves as trace, whereas the state initialization and all transitions are attested through the
ISA. In other words, instead of proving S directly using a suitable AIR, one proves it
indirectly using the register history of a VM that executed S . Figure 2.1 on the next page
illustrates both approaches on a high-level basis.

6 In STARK [20] referred to as Fast Reed-Solomon Interactive Oracle Proofs of Proximity (FRI) protocol. Details of
the FRI protocol are beyond the scope of this thesis.

Chapter 2. Zero-Knowledge Proof Systems 10

Proving Stage

ProofAIR generate

security
params

ProofAIR generate

security
params

Execution Stage

inputs

constraint 1
constraint 2
...

Direct

Constraint 1
Constraint 2
...

define derive

VM

Proof logicdefine execute Execution
Trace

Machine
states

serves as

Indirect

execute
Execution

Trace

inputs

derive

FIGURE 2.1: Direct vs. Indirect ZKP Approach
Other than proving S directly, it can be proven indirectly by executing it inside a VM. The time series of all

machine states of that VM, i.e. the VM’s execution trace of S , serves as a basis for the subsequent STARK proof.
The indirect approach allows for generalized constraints that are independent of S , which is seen as advantage.

A disadvantage, however, is the increase overhead and system complexity.

One significant advantage of such VM-based proving approaches is the generalization of
the underlying AIR. As a result, one can generate ZKPs for any general computation, as
long as it can be executed inside the VM. One therefore also speaks of Zero-Knowledge Virtual
Machine (zkVM), however, we continue to use the term VM for the remainder of this work.
We refer interested readers to the work by Dokchitser and Bulkin [25] that explains in detail
how to implement such zkVM.

On the other hand, this indirect approach introduces two disadvantages. Firstly, it amplifies
the system complexity of ZKP frameworks. This increases the difficulty for both developers
seeking to comprehend the underlying processes and prospective cryptographic audits.
Both represent crucial aspects for deployments in productive environments.

The second disadvantage lies in the incurred computational overhead. VM initialization,
for example, already increases the total number of clock cycles required to prove S . On
top of that, a single operation inside the proof logic may result in more than one cycle
inside the VM due to its reduced ISA. It follows that a direct approach is more likely to be
computationally efficient than an indirect one for S with a small number of constraints.

Since many ZKP use cases involve hashing, researchers also investigate into the developed
of ZKP-friendly hash functions Ben-Sasson, Goldberg, and Levit [26] and BaarkingDog [27]
that aim for a more efficient AIRs. However, their detailed examination falls outside the
scope of this thesis.

Chapter 2. Zero-Knowledge Proof Systems 11

Framework VM Proof Logic License References

Miden yes Miden ASM MIT [28]
RISC Zero yes Rust / C++ Apache-2.0 [29, 30]
Stone Prover no Cairo0 Apache-2.0 [31, 32]
Triton yes Triton ASM Apache-2.0 [33]
Valida yes C Apache-2.0 & MIT [34]
Winterfell no Rust MIT [35]
Zilch no ZeroJava MIT [36]

TABLE 2.2: STARK-based ZKP Frameworks
Lists a collection of promising projects alongside their license and references. Cases that rely on VMs imply an

indirect proving approach. Proof logic specified the circuit formulation language used in the framework.

Existing ZKP Frameworks

We dedicate the remainder of this section to an overview of existing ZKP frameworks
implementing a STARK system. A collection of the most promising ones are shown in
alphabetical order in Table 2.2. The «VM» column indicates whether the framework follows
a direct (no) or indirect (yes) approach. The «Proof Logic» column specifies the language
used to formulate the underlying S .

Miden and Triton, for example, require proof logic formulations in a language similar to
Assembly (ASM). ASM serves as a low-level bridge between human-readable instructions
and the raw commands for the Central Processing Unit (CPU). Through mnemonic codes7, it
translates fundamental operations like arithmetic, logic, and data movement into instruc-
tions the CPU can execute.

Other frameworks, such as Valida or Zilch, allow to formulate proof logic using a higher-
level language, similar to or derived from popular programming languages. The resulting
formulations are eventually compiled into ASM-based instructions. Stone Prover, on the
other hand, introduces CairoZero or Cairo0, a programming language designed explicitly
for formulating ZKPs.

RISC Zero and Winterfell allow developers to specify the proof logic more naturally using
established languages such as Rust, or in the case of the former also C++. Relying on general-
purpose programming languages introduces two advantages. The first one concerns the
existing community that fosters further development in that particular language indepen-
dent from any ZKP frameworks. The other lies in the high accessibility for developers
in that space, as they can benefit from previous experiences with these languages. This
language-conformity, combined with the ability to prove general computations, thanks to
the indirect approach, were the two determining reasons for our focus on RISC Zero in this
thesis.

7 For example, the 32-bit register EAX stores the value 2 after executing «MOV EAX, 5» and «SUB EAX, 3».

12

3 Risc Zero Framework

RISC Zero or risc0 is a ZKP system for general-purpose computations. Applying our
previously stated notation, it aims to create STARK proofs for any S whose proof logic
can be executed or computed inside their VM. The produced history of chronological
machine states acts as execution trace, attesting the computation’s integrity in a verifiable
manner. More specifically, the VM emulates a RISC-V1, i.e., an open-source reduced ISA
standard. It allows P to keep the witness of S secret and thus prove in zero-knowledge.
This chapter introduces the RISC-V architecture to the readership, followed by elucidations
on the proving and verifying process with risc0.

3.1 RISC-V Instruction Set Architecture
RISC-V was designed with simplicity and modularity in mind. Unlike Complex Instruction
Set Computing (CISC) architectures, RISC architectures aim to streamline the instruction set
to a minimal set of simple and orthogonal instructions. This modular design philosophy
enhances the efficiency of instruction execution, making it easier to optimize compilers and
design efficient hardware. What started as a project at UC Berkley [37] has gained popularity
and is available in its fifth version (hence the ‘V’ in the name).

The RISC-V ISA is based on a fixed number of general-purpose registers and a set of
instructions, each designed to perform a specific, simple operation. This simplicity facilitates
more accessible hardware (or VM) implementation and promotes a more straightforward
understanding of the instruction set. Its standard or base module exists in 32, 64, and 128-bit
architecture. For example, the RV32I base integer instruction set refers to the 32-bit version
and features 32 general-purpose registers. In its embedded version (RV32E), the number of
general-purpose registers is reduced to 16 for efficiency purposes.

Thanks to the modular concept, a base variant can be extended to enable additional func-
tionalities such as integer multiplication/division (M code), floating-point operations (F or
D code for single resp. double precision), and many more. For a deeper understanding of
other RISC-V variants, we encourage readers to explore the official RISC-V manual [38].
Additionally, for more foundational insights into the instruction processing in RV32I, we
recommend the excellent book by Winans [39] which is available in draft form.

The VM in risc0 implements the RV32IM instruction set, i.e., the base set RV32I extended
with the M module. It operates in a single-threaded environment without preemption2. In
the event of an exceptional occurrence, for instance, a misaligned memory access, the VM
simply terminates execution without executing any exception handlers. Also, it follows a
strict execution order to ensure sequential consistency.

1 Pronounced as «risc five».
2 Preemption refers to the operating system’s ability to interrupt and switch tasks in execution.

Chapter 3. Risc Zero Framework 13

3.2 Proving & Verifying Process

Now that we understand the VM’s architecture used in risc0, this section discusses the
proving and verifying process to complete the picture. Bruestle and Gafni [29] elaborates the
technical and mathematical aspects in greater detail. However, it is still a work in progress.

We summarize the end-to-end process using our own notation in Figure 3.1, focusing on
the high-level information exchange between the subprocesses or stages. This involves, at
the beginning, the execution stage (red), followed by the proof stage (blue), and finally, the
verification stage (green).

Execution Stage

In the beginning, P defines the proof logic L for a particular S . risc0 allows to specify L in
Rust or C++ and also refers to it as guest method. Guest methods qualify as public information
and every V possesses its own copy L′.

We further denote the witness ω as suitable input for L. It is important to note that L is not
entitled as private information and must be known by any verifying party. On the other
hand, ω must remain private in order to accomplish a ZKP. However, it is also possible to
fully or partially disclose ω to V if desired. We revisit this aspect later in an example.

exec L(ω) 7→ J

commit J

read ω

stage (L, ω)

S = {T, J, h(J), h(L)}

create π

validate T

use S

R = {π, J, h(J), h(L)}

examine J

verdict V

verify π

verify h(J)

verify h(L′) ∈ R

provide R

V ∈ {accept, reject}

Prover VM STARK Verifier

FIGURE 3.1: Sequence Diagram of risc0 Proof & Verify Process
Visualized the information flow during execution (red), proof (blue), and verification (green) stage.

The objects VM and STARK represent the relevant software components inside the risc0 framework.
While the specified order is crucial, the individual stages may occur out of sync.

Chapter 3. Risc Zero Framework 14

P stages (L, ω) onto the VM which, after its initialization, executes L using ω as input. In
practice, risc0 compiles L into an Executable and Linkable Format (ELF) file in order to execute
it using the RV32IM instruction set. The result of L(ω) can be written or committed to the
so-called journal J. L may also commit any intermediate or final result(s) to that journal
such that V can examine them later. Although committing values to the journal is not a
mandatory step for the proving process, it is usually pursued to some extent to allow the
validation of a computation’s outcome.

Consider a modified Fibonacci sequence with x0 = 1 as the first element. Assume we would
like to prove that we know a second element x1 such that the tenth element is x9 = 259. The
guest method in Listing 1 exemplifies how a corresponding L for this particular S could
look like.

Listing 1 Example Guest Method in Rust
1 pub fn main() {

2 let mut x1: u32 = env::read(); // secret second element

3 let mut x0: u32 = 1; // known first element

4 for _ in 2..10 {

5 let tmp = x0 + x1;

6 x0 = x1;

7 x1 = tmp;

8 }

9 env::commit(&x1); // commit result to journal

10 }

After initialization, the guest method reads the (previously staged) private ω on line 2.
In order to conclude with the target of x9 = 259, the required private information in this
case is x1 = 7. The first element (line 3) as well as the number of iterations (line 4) are
hard-coded. However, they could also be passed as additional (public) ω. We commit the
result of this computation, namely x9, at the end to J (line 9) to allow its examination during
the verification stage. As we are interested in a ZKP, we do not provide any information
about ω in J, albeit technically possible. Note that risc0 employs the verb committing here
to denote the act of providing or writing information to J. This usage deviates from the
conventional interpretation of the verb in the realm of cryptography.

We receive the so-called session S = {T, J, h(J), h(L)} as a result of this execution phase3. It
subsumes the following objects:

• Trace T: The execution trace, i.e., all encountered VM states during the execution of
L(ω). The more clock or execution cycles our program L(ω) requires to execute, the
longer T becomes.

• Journal J: The object containing committed intermediate or final results from our
computation L(ω). Allows V to examine relevant parameters, intermediate or final
results.

3 Note that the session S differs from our notation for statements S .

Chapter 3. Risc Zero Framework 15

• Digests h(J) and h(L): The hash values of J and L using the a cryptographic hash
function (SHA2-256 by default). They enforce the infeasibility for undetectable post-
execution alteration to either J or L. risc0 also refers to h(L) as ImageID.

Proof Stage

S serves as a basis for generating the actual STARK proof π. Beforehand, risc0 checks the
validity of T, i.e., all state transitions align with the constraints derived from the RV32IM

instruction set. The framework nicely abstracts this stage using one line of code that returns
the so-called receipt R. It is used to propagate J, h(J), and h(L) from S alongside π to any
prospective V .

R is considered public information and will be exchanged as a whole for the subsequent
verification stage. It is by default stored as binary file but can also be exchanged in a more
human-readable format through JSON serialization. The latter, however, is less storage
efficient. Also, it is essential that T ̸∈ R as it would allow inferences about ω, which is
unwanted in a ZKP. risc0 refers to π also as the seal of R since it attests the computational
integrity of J using the STARK protocol.

As for the execution stage, risc0 expresses the proof’s computational complexity in cycles.
Figure 3.2 illustrates this execution-prove-cycle relation over a few selected observations.
An observation, in that sense, comprised performing the execution and proof stage for an
arbitrary S .

The cycle count is shown in logarithmic scale over some selected observations with growing
trace length. The minimal required amount of proof cycles in risc0 is 216 due to VM
initialization and clean-up. This overhead together with the fact that some operations in the
RV32IM ISA required more than one cycle to complete makes it difficult to pre-determine
the amount of proof cycles required for a given L(ω). What is determinable, however, is
that the proof cycle count always pads to a higher power of two as it allows a more efficient
Reed-Solomon encoding. This padding explains the step-wise growing pattern of the proof
cycle data series noticeable in Figure 3.2.

Observations
212

214

216

218

220

Cy
cle

s

Execution-Prove-Cycle Relationship in risc0
Prove Cycles
Execution Cycles

FIGURE 3.2: Execution-Prove-Cycle Relation
Illustrates the relationship between execution and proof cycles in risc0. The latter is derived from the execution
cycle count, consistently representing a padded value to a higher power of two, but at minimum 216 due to VM
initialization and finalization. This padding introduces a discernible step-wise growth pattern. We intentionally

avoided using one of the data series as the x-axis tick to enhance pattern clarity.

Chapter 3. Risc Zero Framework 16

The risc0 framework automatically splits larger L(ω) executions into so-called segments.
By default, segments accommodate ⩽ 220 cycles and are paginated such that a next segment
starts with the VM state where the previous segment terminated.

The segmentation feature, termed continuation, is a promising tool for enhancing proving
efficiency in risc0 [40]. This encompasses, for example, parallel segment proving and
the ability to control Random Access Memory (RAM) consumption by defining user-specific
segment sizes. For this thesis, we adhere to default settings, reserving exploration of these
parallelization capabilities for future research.

Verification Stage

So far, we elucidated the execution and proof stage which is both conducted by P . Since
this involved a considerable amount of different objects, we recall the meaning for our letter
notations to enhance clarity.

The verifying party possesses its own copy of the proof logic L, which we denote here as L′.
The verification process contains the following four steps, whereas the outcome of every
step must be positive to justify proceeding to the next one.

1. Verify that receipt R was indeed generated on the basis of L′, given that L = L′. When
h(L′) ̸∈ R, the presented proof is subject to a different (not pre-consented) S .

2. Verify that no post-execution alterations of journal J exist by recomputing h(J).

3. Verify the actual STARK proof π.

4. Examine the information committed to J and derive the final verdict V from it4. In our
Fibonacci example from Listing 1, we would still reject R if x9 ̸= 259.

4 Note that the verdict V differs from our notation for verifier V .

17

4 ZKit Test and Benchmark Suite

The previous chapters contributed to a common base of understanding for the readership.
We delved into ZKP systems, with an emphasis on the STARK protocol and illustrated
how risc0 enables us to indirectly prove general-purpose computations in zero-knowledge
using its VM. In this chapter, we introduce the system architecture and functionalities of
ZKit, our extensible test and benchmarking suite for ZKP frameworks.

4.1 System Architecture

We developed ZKit predominantly in Rust1. This relatively young programming language
has experienced a notable surge in popularity over the past few years [41]. In this section, we
briefly underscore commendable features of Rust and explain the rationale behind selecting
this language. Subsequently, we elucidate our design decisions in ZKit and describe the
purpose of all containing components. Figure 4.1 provides an overview of the system
architecture.

cli

utils

testbed

risc0

python

go

cmdcmd corecore

zkvmzkvm corecore

gostarkgostark

gocallergocaller

main

merkle

prove

verify

bench

plot

merkle hash

basefile

tests benches

jobs common

APICAPI guests

executor

host

logic

modelplots libs main

main

FIGURE 4.1: ZKit Component Diagram
Visualizes the interdependencies between packages (blue).

Each package contains several modules or module groups (yellow).

1 More specifically, we use the nightly channel or version of Rust to benefit from latest features. See Rust’s
homepage and documentation for details.

https://www.rust-lang.org/
https://doc.rust-lang.org/book/

Chapter 4. ZKit Test and Benchmark Suite 18

Why Rust

The main reason for choosing Rust as predominant programming language in ZKit is that
most promising ZKP frameworks are built and/or compatible with Rust. This applies, for
example, the majority of the projects listed in Table 2.2 (vic. Miden, risc0, Triton, Valida,
Winterfell). Therefore, we chose to build ZKit using the same language to maximize inter-
operability. Besides this, Rust also supports a feature called Foreign Function Interface (FFI),
enabling cross-language operability. We utilize this feature in our Go-wrapper endeavour.
Details on that follow later in this section.

To better understand the prevalence of Rust in this cryptographic domain, we emphasize two
notable aspects [42]. One of the key factors contributing to Rust’s popularity in cryptography
is its emphasis on memory safety. Similar to C++, for example, pointer-based development
is encouraged. However, Rust’s so-called ownership and borrowing system prevents common
programming errors such as null pointer references. It is enforced on compile-time and
allows Rust not to have a garbage collector, which positively affects run-time performance.
The resulting confidence in correctly operating code is especially desired in critical systems,
such as in human-machine interactions (aircraft, elevators, etc.).

The second compelling aspect concerns performance. Its zero-cost abstractions and memory
allocation control allow to optimize performance-critical systems. This feature is particu-
larly beneficial in cryptographic applications where computational efficiency is essential.
Overall, Rust is a memory-safe, multi-paradigm, high-performant, and developer-friendly
programming language ideal for applications aiming for robustness and security.

Components & Dependencies

We structure the different components of ZKit in packages , which further contain modules .
Figure 4.1 visualizes all components and their interdependencies, indicated through arrows.
The symbol declares a module group. Unless explicitly specified, we handle modules in
the same manner as module groups in our explanations.

In this subsection, we state each package’s intention and describe their dependencies.
The chosen presentation order is designed to provide an explanation without requiring
anticipation in each instance, ensuring a coherent narrative. Where deemed relevant, we
mention dependencies to other external or third-party libraries. Libraries in Rust ecosystem
are commonly referred to as crates. Such external crates, however, are not modeled in
Figure 4.1 for the sake of better readability.

utils contains general functions with a high potential for reusability across ZKit. The

hash module provides abstractions for various cryptographic hash functions to
call them generically. Functions concerning random value generators or encoding
translations (e.g. binary to hexadecimal) are located in base . All functionality

related to constructing Merkle trees and IPs are contained in the merkle module.

Besides consuming hash and base functionalities, we rely on the third-party
Merkle tree implementation called rs-merkle in the background. As the name
suggests, file provides functionalities for file operations (e.g. read/write access).

Chapter 4. ZKit Test and Benchmark Suite 19

risc0 bundles everything related to the eponymous ZKP framework at focus in this

thesis. We define all the proof logic in the core module group, differentiating

between object structures in model (the what) and processing in logic (the

how). The guests module consumes this core eventually to define the required

guest methods. We import the zkvm module group from the risc0 framework
to instantiate and host VM instances used to executed these (guest) programs.
The API module exposes the interface for executing and verifying ZKPs. CAPI

wraps the relevant functionalities from the API in a FFI conform manner, making
them accessible to other programming languages.

testbed represents the core of our test and benchmarking suite. In tests and benches , we
ensure integrity and analyze the performance of non-ZKP-related functionality in
ZKit. This includes, for example, functionality from utils or cli . Both modules
are designed exclusively for Continuous Integration (CI) purposes and are intended
to be excluded in release builds. The core module group contains the ZKP-related
benchmarks, also referred to as jobs. Job commonalities, such as sample data,
interfaces, or input sizes (also known as magnitudes), are normalized in common .
These benchmarks are designed to be included in release builds as they ship
alongside the CLI.

cli serves as main user interaction tool. We can create Merkle tree data structures

and IPs for specific leaves using the merkle module. The prove and verify
modules allow the creation and verification of ZKPs. At the moment, the CLI
solely communicates to the API in risc0 . This communication will expand to
other Application Programming Interfaces (APIs) by extending ZKit to further ZKP
frameworks. Lastly, bench contains the functionality to trigger parameterized

benchmark jobs and visualize the results using plot . Automated plotting, how-
ever, is still under development at the time of writing. Note that all module
names correspond to first level CLI command names.

python entails relevant functionality to visualize benchmark results using Python. As the
name suggests, this is one of mentioned exceptions where we do not use Rust.
Although plotting crates exist in Rust, we discovered them as less convenient and
powerful than established libraries in Python.

go acts as a proof of concept to port the implemented ZKP functionality written

in Rust to Go. We compile risc0 into a dynamically linked library and embed

it with a suitable header file inside gostark , i.e., the Go wrapper. On the Go
side, we re-implement the interface specified in that header file to use the ported
library through its FFI. Eventually, we can use the Go wrapper identically as
every other Go library by simply importing and calling the available functions.
We demonstrate this in gocaller , that imports and consumes gostark in a pure
Go manner. The following subsection elaborates on this porting and wrapping
strategy in detail.

Chapter 4. ZKit Test and Benchmark Suite 20

Go-Wrapper

As mentioned above, Rust supports interoperability with other programming languages
through its FFI. We use this feature to port the ZKP functionality to our Go wrapper. Our
motivation for portability is to facilitate the integration of ZKPs in existing Go projects
using minimal efforts. In particular, we anticipate the integration in the FTS. The following
paragraphs elucidate our approach to support the overall comprehensibility of future
developers.

The official package manager and build tool in the Rust programming languages is called
Cargo2. It allows to specify configuration settings and metadata for a given Rust project in
the so-called Cargo.toml file, which resides in the project’s root folder. In other software
development technologies, one would also refer to such a file as manifest. One particular
attribute in this manifest concerns the crate-type. It specifies the types of output artifacts
that should be generated during the compilation of a Rust project. These artifacts include,
for instance, static/dynamic libraries or executables.

In order to port the ZKP functionalities to Go, we additionally build the risc0 package
with the crate type cdylib, which stand for «C dynamic library». As stated above, we
exposed the relevant interfaces to create and verify ZKPs in the CAPI module using the
FFI functionalities. The last thing to consider before we can consume the functionality of
the C dynamic library in Go is the interface’s declaration in a header file3. We created the
compatible header file manually, however, one can derive them automatically using a tool
called cbingen [43]. Finally, both the dynamic library and the header file are referenced in a
multi-line comment at the beginning of the invoking Go file (e.g. main.go).

Figure 4.2 summarizes the required steps to access functionality developed in Rust (R) from
Go (G). The step prefixes identify to which language the instruction below apply to:

R1 Define public API using
the FFI.

R2 Declare the desired dy-
namic library build target
in the manifest.

R3 Build the project to gener-
ate the artifacts.

G1 Embed generated dynamic library from (R3)
in the Go package’s source.

G2 Provide a compatible header file, declaring
the interface from (R1).

G3 Reference the library in the required header
comments and consume the functions
through the FFI.

Rust Go

cdynlib R3

G1

Package Package

G3main.go

G2header.hR2Cargo.toml

R1main.rs

FIGURE 4.2: Rust to Go Compile Process
Shows a generic high-level model on how to port Rust (R) packages to Go (G).

Details for the steps R1 to R3 and G1 to G3 are stated in text above.

2 See the Cargo Guide for more details.
3 Used to share code definitions between source files in C/C++ programming.

https://doc.rust-lang.org/cargo/guide/index.html

Chapter 4. ZKit Test and Benchmark Suite 21

4.2 CLI Functionalities

The primary mean to interact with ZKit is the CLI tool, shown in Figure 4.3. We can use
it to create and verify ZKPs for the two different use cases or disciplines that are already
implemented. The first discipline is called preimage. It allows P to prove knowing an input to
a cryptographic hash function for a public digest, without revealing this input. The second
discipline concerns IPs and is thus called identically (ip). It allows P to prove knowing a
certain leaf data of a Merkle tree with public root hash.

FIGURE 4.3: Screenshot of the ZKit CLI
Shows the help screen, listing the available first-level commands.

Each command further structures into subcommands.

Although hashing is an integral component to prove the inclusion of a leaf in a Merkle
tree, we examined this discipline separately for two reasons. First, proving a preimage is
a common showcase discipline in many ZKP frameworks thanks to its simplicity. Second,
examining different hash functions atomically provides valuable insights for better design
decisions in the more complex IPs discipline. More details on these design decision will
follow in the next chapter, where we present our benchmark results.

The remainder of this section provides an overview of the CLI’s functionality by means of
the IP discipline. The user experience in more trivial preimage discipline is analogical to it
and thus not particularly discussed.

Merkle Tree Data

For a start, the CLI allows the generation of Merkle tree data structures for custom depths.
One can provide the leaf data explicitly or rely on random generators. More interesting than
an entire tree is generating an IP for a distinct leaf. The Bash4 command shown in Listing 2
below accomplishes this.

Listing 2 Bash Command to Create IP
1 cli merkle prove -e "alice bob paul vanja" -l "bob" -a sha256 -o ip.json

4 Unix command language interpreter.

Chapter 4. ZKit Test and Benchmark Suite 22

It first generates the entire Merkle tree with the four specific leaf elements (-e) using the
SHA2-256 hash algorithm. Once the root hash and all intermediate node hashes are known,
it proves the inclusion of the leaf «bob». As result, we receive the IP as a JSON output (-o).

Listing 3 exemplifies the content of the constructed IP. It structures in two parts. The first
part contains all relevant information to recompute the root hash of the Merkle tree. This
contains the hash function to be used (line 1) and the root hash itself (line 2). We represent
all digests in hexadecimal format to support human readability, however, they are processed
internally as byte arrays. The leaf index (line 3) states the exact position of the provable leaf
among all other leaves. Here, «bob» is the second leaf, which corresponds to the zero-based
index 1. To verify this IP, we recompute the hash value of the actual leaf data (line 4) and
then continue with successively concatenating the intermediate node hashes that define
our authentication path (line 6–7). This array of intermediate node hashes is stated in the
expected order, i.e., from first (top) to last (bottom).

Listing 3 Example IP as JSON
1 "hash_function": "sha256",

2 "root_hex": "01e94053710c6b7fa55a97f76cab16d1040639ca6c3d6748449798772e6b229d",

3 "leaf_index": 1,

4 "leaf_data": "bob",

5 "auth_path": [

6 "2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db186d6e90",

7 "f802fe0db602361c5ef043b1f2f280ff3c13c25d0b72bf2e0dc701a928f47742"

8],

9 "meta_data": {

10 "leaves": ["alice", "bob", "paul", "vanja"],

11 "leaves_digest": [

12 "2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db186d6e90",

13 "81b637d8fcd2c6da6359e6963113a1170de795e4b725b84d1e0b4cfd9ec58ce9",

14 "0357513deb903a056e74a7e475247fc1ffe31d8be4c1d4a31f58dd47ae484100",

15 "52fd7e6e755e924643b2304102f15f71b64c38ed9f7134ef3e1f84160b5b5e2c"

16],

17 "ap_size": 2

18 }

The second part of the IP data structure in Listing 3 carries optional meta data. This includes
all original leaf data (line 10) and their digests (line 12–15), in respective order. At the end,
we state the authentication path size (line 17), which in this case corresponds to the tree
depth.

Neglecting the optional meta data, we defined this IP data structure in the most minimal
possible way. This presumes, however, that the underlying Merkle tree qualifies as a perfect
binary tree, i.e. trees with 2n leaves. This particular tree class allows to derive the concate-
nation order of current and intermediate hash solely from the leaf index. Otherwise, every
intermediate node hash must be accompanied explicitly with its concatenation direction.

The reason for this minimal IP interface design is, that it allows a more efficient guest method
implementation for the actual ZKP. Generally, the simpler the execution of a guest method

Chapter 4. ZKit Test and Benchmark Suite 23

with respect to a given input, the smaller the resulting trace and the faster the subsequent
STARK proof.

Algorithm 1 below illustrates the verification process used in the guest method, adapted
from [3, Chapter 4.2]. It consumes three objects as input, namely the data d and index
of the provable leaf di, as well as the array of intermediate node hashes Pauth acting as
authentication path. Thanks to the perfect binary tree structure, we can replicate the all
correct concatenation directions solely from di using bitwise AND operations (&) followed by
right bit shifts (≫) to discard the least significant bit. The IP succeeds when the recomputed
root hash H∗R equals the expected or target root hash. ZKit implements this algorithm
accordingly.

Algorithm 1 Inclusion Proof Verification in Perfect Binary Tree Situations
Input: Leaf data d, leaf index di, intermediate node hash array Pauth

Output: Recomputed root hash H∗R
1: procedure RECOMPUTEROOTHASH (d, di, Pauth)
2: H ← h(di) ▷ create leaf node hash
3: n← len(Pauth) ▷ get authentication path size
4: i← di ▷ initialize concatenation direction indicator
5: for Hp ∈ Pauth do
6: lastbit← i & 1 ▷ bitwise AND operation
7: i← i≫ 1 ▷ right bit shift, discarding least significant bit
8: if lastbit = 1 then ▷ decision on concatenation order
9: H ← h(H | Hp) ▷ right concatenation

10: else
11: H ← h(Hp | H) ▷ left concatenation

12: H∗R ← H ▷ last hash value represent root hash
13: return H∗R

What is not shown in Algorithm 1 for brevity reasons are the hash function selection and
the comparison of H∗R against the specified target root hash from the IP file. In our guest
method implementation, we commit H∗R alongside the comparison outcome to the journal
for examination purposes at verification time.

Proving

The in Listing 3 presented IP file serves as input for the actual STARK proof, as shown in
Listing 4. We therefore specify the ZKP framework to be used for the proof (-f). At the time
of writing, this parameter can be omitted since risc0 is the only framework available in
ZKit and thus assumed by default. We point to the previously generated IP file that serves
as sole input (-i) and specify a file name to save the STARK proof (-o). In the case of risc0,
this output is the receipt R (see Figure 3.1).

Listing 4 Bash Command to Create ZKP of IP
1 cli prove ip -f risc0 -i ip.json -o mystarkproof

Chapter 4. ZKit Test and Benchmark Suite 24

This command triggers the following actions behind the scenes. First, the CLI parses the
content from the IP file (see Listing 5) into two objects, vic. PrivateInput and PublicInput.
The PrivateInput subsumes the leaf data, leaf index, and the array of intermediate node
hashes. As the object name suggests, these information must remain secret and will not be
shared with any V . The PublicInput subsumes the required hash function name and target
root hash, both considered public knowledge that is shared with V .

Next, both objects are propagated to the risc0 package using the API module. What
follows are the execution (red) and proof stage (blue) described in Figure 3.1, whereas the
latter represents the time- and resource-expensive operation. The resulting receipt R is
returned to the CLI package which coordinates its serialization into a binary file.

We emphasize that the distinction between public and private input using designated objects
is not strictly necessary. Alternatively, one could directly serialize the IP as an object instead
of transforming the contained data fields into two separate objects. However, we made
a deliberate choice to define the API in this explicit manner for two reasons. Firstly, it
enhances intuition regarding what constitutes secret information that should not be shared
with any other party. Secondly, the two objects may be composed in different processes
running asynchronously. For example, the PrivateInput can be composed directly on P ’s
device, while the PublicInput is sourced from another (public) system. The latter may also
occur less frequently.

Verifying

The command shown in Listing 5 will verify the previously generated R. It requires pointing
to the binary file R and specifying the expected root hash (-r).

Listing 5 Bash Command to Verify ZKP of IP
1 cli verify ip -i mystarkproof.bin \\

2 -r 01e94053710c6b7fa55a97f76cab16d1040639ca6c3d6748449798772e6b229d

It executes the described steps in the verification stage (see green process in Figure 3.1). The
provided root hash is employed to ascertain the final verdict V. Other than the proving
command, this verifying a STARK proof concludes in milliseconds. In a future productive
setting, one might transmit R over a potentially insecure communication channel from the
proving party to the verifying party. Nevertheless, owing to its computational efficiency, the
proving party can effortlessly self-verify the generated proof before transmission.

Benchmarking

Besides creating and verifying ZKPs, the CLI serves also the purpose to measure their time
and resource consumption by means of benchmark jobs. In this sense, a job is defined as
a distinct instance of a discipline, featuring various flavors and executable with diverse
input sizes. As earlier stated, we refer to a set of input sizes as magnitudes. To facilitate
subsequent analysis of benchmark results, magnitudes are categorized into five classes,
namely XS, S, M, L, and XL.

Chapter 4. ZKit Test and Benchmark Suite 25

For example, different hash functions or implementation strategies could act as flavors.
Magnitudes, on the other hand, could refer to different input byte sizes or – in the case of
Merkle trees – tree depths. More details on the existing jobs in ZKit with the concrete flavor
and magnitude specification follow in the next chapter.

Listing 6 demonstrates how to execute all predefined jobs in all flavor variants (-j) for all
magnitudes (-s). Benchmark results are written as comma-separated values to the specified
output file (-o).

Listing 6 Bash Command to Execute Benchmarks
1 cli bench -j all -s all -o result.csv

Note that the execution time for the aforementioned command may range from several
minutes to a few hours. To enhance user experience, we incorporated a progress bar and
provide a --dry-run option, allowing users to obtain a quick overview of the Job-Flavor-
Size (JFS) multiplicity. The following list outlines the attributes and metrics gathered for all
benchmarks.

• Machine: Identifies the host computer that executed the benchmarks. This is especially
useful when working with ZKit on multiple devices or virtual environments.

• Epoch: To receive confident results, benchmarks should be executed repetitively in
the same setting. We use a time stamp to mark and therewith group results from each
run or epoch.

• Framework: Specifies the underlying ZKP framework used for a given job. At the
moment, the only available one is risc0.

• Job Name: Identifies the concrete job using a hard-coded name.

• Job Flavor: Declares the variant of the job. Variants are also hard-coded as they are
highly job-specific. For example, in the preimage discipline, we use different hash
functions as job flavors.

• Job Size: Specifies the input size for a given job. While this is always represented as
an integer value, the meaning of this value is job-depended. For instance, this could
be the number of bytes for a preimage job or tree depth in IP jobs.

• Job Size Alias: Translates the associated size into a magnitude class (XS, S, M, L, and
XL). Facilitates subsequent data analysis and visualization. Similarly to the job size,
this categorization is hard-coded due to its job-specific nature.

• Execution Duration: Indicates the required time to execute the proof logic inside the
VM. Expresses in milliseconds.

• Prove Duration: Indicates the required time to create the STARK proof from the
execution trace. Expresses in milliseconds.

• Verify Duration: Indicates the required time to verify a previously created STARK
proof. Expresses in milliseconds.

Chapter 4. ZKit Test and Benchmark Suite 26

• Execution Cycles: Number of clock cycles required to execute the proof logic for a
given input size inside (either directly or indirectly via VM). The value of this metric
positively correlates with the execution duration.

• Prove Cycles: The number of clock cycles required to create the STARK proof. This
value always exceeds the number of execution cycles due to the blow-up factor and
Reed-Solomon encoding. Identically to execution cycles, the amount of prove cycles
positively correlates with the prove duration. We exemplified the execution-prove-
cycle relationship in risc0 previously in Figure 3.2.

• Peak Memory: Expresses the highest number of used RAM while executing of a
specific JFS combination. This is accomplished by spawning a separate thread for
each JFS execution that periodically measures the consumed memory and returns the
all-time high.

4.3 Extensibility

The fundamental idea of ZKit is to serve as a test and benchmark suite for multiple ZKP
frameworks. This section highlights three essential aspects to consider for future extension
efforts.

General Integration

Future ZKP frameworks are meant to be integrated similarly to the risc0 package. This
means, they contain all necessary modules for creating and verifying ZKPs and expose these
functionaries through a package-specific API. Extending the cli involves consuming those
additional API. Ideally, the CLI looks similar to the examples in Listing 4 or Listing 5, where
we indicate the chosen ZKP framework using the -f argument.

A more complex endeavor, on the other hand, is an elegant way to reuse already existing
proof logic (e.g. guests). The reason for this lies in the highly ZKP framework-dependent
strategy or technique to define proof logic in the first place, as previously shown in Table 2.2
(column «Proof Logic»). For instance, envision incorporating Zilch as the next ZKP frame-
work into ZKit, with the aim of utilizing it for the IP discipline. This integration would
necessitate implementing Algorithm 1 in ZeroJava, the designated language for defining
proof logic in Zilch. In cases where reusability is possible, we encourage encapsulating proof
logic in a distinct (new) package, akin to utils .

Benchmark Disciplines

As outlined in Section 2.2, ZKP frameworks adopt diverse paradigms for encoding proof
logic and may differ in their approaches to both direct and indirect proving implemen-
tations. This diversity may necessitates the implementation of benchmark disciplines in
multiple versions or languages, resulting in potential redundancy. Established benchmark
jobs, however, can quickly scale in variance through the chosen flavoring and magnitude
approach.

Chapter 4. ZKit Test and Benchmark Suite 27

Moreover, it may not be guaranteed that all future ZKP framework extensions uniformly
support the currently defined benchmark metrics. In cases where obtaining metrics such as
the number of execution or prove cycles is unfeasible, we suggest to constrain the subsequent
result analysis exclusively to runtimes.

Ports to Go

So far, the presented Go wrapper serves the purpose to port the CAPI of the risc0 package
to Go. In case porting functionality to Go is also required for additional ZKP frameworks,
we suggest two options.

The first option entails replicating the go package and managing two separate compile
pipelines. This approach offers dual benefits. One is that each wrapper exclusively encapsu-
lates functionalities from a specific ZKP framework, enabling more precise utilization. The
other concerns the independent compile pipelines, allowing for more efficient CI processes.
The disadvantages that this first option introduces, however, is the duplication of boilerplate
code due to the FFI, which necessitates semi-automatically maintenance.

The second option involves integrating the APIs of multiple ZKP frameworks in one single
go package. While this allows to minimize boiler plate code, it would increase the complex-
ity and size of the Go wrapper. Also, the integrity of larger packages that bundle several
different modules becomes more fragile compared to smaller more encapsulated packages
that are easier to maintain as a whole.

28

5 Benchmark Results

This chapter presents the collected benchmark results focusing on the risc0 framework.
As explained in the preceding chapter, ZKit acts as the tool to define and execute these
benchmark jobs in a flexible manner. In particular, we analyses two different disciplines,
whereas one of them exists in two slightly derived version and thus is summarized in this
thesis. Specifically, these disciplines concern preimages and IPs. Before delving into the
details, we provide clarification on the selected system setting and procedure.

5.1 Setting

All benchmarks were conducted on an Ubuntu VM with a 2.3 GHz CPU and 32 Gigabytes
RAM. To minimize potential side effects during these executions, only the components es-
sential for ZKit were installed and no other processes ran concurrently with the benchmarks.
Furthermore, each benchmark execution underwent three repetitions to alleviate unex-
plained fluctuations and ensure more reliable averaged results. Given the high consistency
of the results, additional repetitions were considered unnecessary.

We implemented three distinct jobs covering the two previously described disciplines to
prove the efficiency of creating and verifying ZKPs in risc0. Table 5.1 provides an overview
of the available jobs and specifies the flavor and magnitude details.

The preimage job is centered around the name-giving discipline, utilizing various crypto-
graphic hash functions as flavors. The magnitudes of this job indicate the number of input
bytes supplied to each respective function.

Job Purpose Flavors Magnitudes

preimage Proving knowledge of a preim-
age for a given digest

Various cryptographic
hash functions

Number of input or
preimage bytes.

ip Proving the inclusion of a single
data leaf in a Merkle tree with a
give root hash

Various cryptographic
hash functions

Depth of the (perfect
binary) Merkle tree

ip_batched Proving the inclusion of multi-
ple (batched) data leaves in a
Merkle tree with a give root hash

Various batch sizes Depth of the (perfect
binary) Merkle tree

TABLE 5.1: Available Benchmark Jobs in ZKit
Provides an overview of the implemented benchmark jobs within ZKit used to analyze the performance and

resource consumption of risc0. All jobs offer flexibility in their execution, allowing for variations through
different flavors and magnitudes.

Chapter 5. Benchmark Results 29

The ip job involves proving a single leaf using different hash functions as flavors. In this
context, the magnitudes specify the tree depths of the perfect-binary Merkle trees containing
the targeted leaf.

Last but not least, the ip_batched job focuses on the same discipline as in the ip job, but
with a focus on proving multiple leaves at once. In other words, we generate a single STARK
proof for an execution trace that involves verifying an array or batch of IPs. The flavoring in
this job indicates the number of IPs processed within one proof. We refer to this number
also as batch size. Similar to the single setting, the magnitudes in this context correspond to
the tree depths.

Considering that the preimage job already analyses the efficiency of hash functions atomi-
cally, revisiting the same flavor classes during the more complex ip job is deemed redundant
for the remainder of this chapter. Instead, we direct our attention to the results of the
ip_batched job executions, employing the hash function identified as the most efficient in
the preimage job. This approach eventually enables a comparison between the single and
batched IP job variants, whereas we assess a range of batch sizes. In essence, we aim to
answer the question of whether creating a single ZKP for a batch of IPs can be more efficient
than proving the same number of IPs sequentially using multiple ZKPs.

The rest of this chapter structures as follows. Section 5.2 summarizes the results from the
preimage job and discusses the selection of the superior hash function in terms of efficiency.
We used the selected hash function to run the ip_batched job and present the results in
Section 5.3. Finally, we analyze the relative performance gain of batched settings.

5.2 Preimage

As the name suggest, this job simply entails calculating a hash value for a secret preimage.
The chosen cryptographic hash function, acting as flavors, are the following:

• sha2-256: Belongs to the SHA-2 hash function family [44]. Widely employed in practice
for data integrity verification, cryptographic applications, and blockchain applications.
We selected this function based on its widespread popularity.

• sha2-256-o: An optimized version of sha2-256 specifically designed for the RV32IM

ISA used in risc0’s VM. We included this function as a flavor in order to validate the
promised optimized performance.

• blake3: High-speed cryptographic hash function based on the BLAKE2 family, offering
parallelism and security [45]. We chose this function for its competitive performance
compared to other functions and its potential for acceleration on RISC-V ISAs [46].

• keccak-256: Member of the SHA-3 family [47] and acknowledged as one of the most
secure hash functions. This choice is simply motivated by the fact to include an
representative of the SHA-3 family as flavor.

• sha3-256: Another member of the SHA-3 family [47] and represents a derived version
of keccak-256, optimized for performance. The inclusion of this function aligns with
the rationale for keccak-256.

Chapter 5. Benchmark Results 30

The magnitudes in this job represent the number of input bytes of the hashed message
and are defined as powers of two. The reason for this pattern stems from the desire to
probe a wide range of workloads in a reasonable time, considering the computational
complexity of ZKPs. Ranging from the smallest (XS) to largest (XL), the magnitudes are
{64, 256, 1‘024, 4‘096, 16‘384} input bytes. In practice, we randomly generate an array of
bytes with the according length.

We organized the benchmark analysis into two aspect groups. The first group addresses re-
source consumption in general, while the second concentrates on the resulting performance.

Resource Consumption

Figure 5.1 provides a summary of resource costs with four aspects depicted as subfigures.
The different data series represent various flavors in the preimage job, i.e., hash functions.

The first aspect shown in subfigure (a) concerns the required amount of clock cycles to
execute the proof logic with a given witness (previously denoted as L(ω)) insides the VM. It
becomes evident that there are significant differences in efficiencies among the chosen hash
functions. For instance, sha2-256-o requires roughly between 9 to 90 times fewer cycles
across all magnitudes compared to the two most expensive ones, keccak-256 and sha3-256.
The middle field accommodates blake3.

This behavior is directly reflected in the proof cycles illustrated in subfigure (b). As men-
tioned in Section 3.2, we use risc0 with the default segment size of 220 cycles. Executions
requiring nearly as many (accounting for VM initialization and finalization) or more cycles
will be split into two ore more segments. Each segment is capable of accommodating ⩽ 220

cycles.
Preimage

sha2-256-o sha2-256 blake3 sha3-256 keccak-256

210

213

216

219

222

225

Cy
cle

s (
lo

g)

4K 4K 6K

11
K 32

K

14
K

14
K

15
K

21
K 42

K

15
K 22
K 50

K 17
0K 65

0K

38
K 64

K 21
8K 81

0K 3'
12

6K

38
K 64

K 21
8K 81

0K 3'
12

6K

(a) Execution Cycles

215

217

219

221

223

Cy
cle

s (
lo

g)

65
K

65
K

65
K 13

1K

13
1K

13
1K

13
1K

13
1K

13
1K 26

2K

13
1K

13
1K

13
1K 26

2K

1'
04

8K

13
1K 26

2K 52
4K 1'

04
8K 3'

40
7K

13
1K 26

2K 52
4K 1'

04
8K 3'

40
7K

(b) Proof Cycles

64 256 1'024 4'096 16'384
Input Bytes

0

250

500

750

1'000

1'250

1'500

Ki
lo

by
te

s

21
5

21
5

21
5

23
8

23
8

23
8

23
8

23
8

23
8

25
0

23
8

23
8

23
8

25
0

27
5

23
8

25
0

26
2

27
5

1'
07

6

23
8

25
0

26
2

27
5

1'
07

6

(c) Proof Size

64 256 1'024 4'096 16'384
Input Bytes

0

2

5

8

10

12

Gi
ga

by
te

s

0.
69

0.
69

0.
67 1.

35

1.
43

1.
29

1.
31

1.
27

1.
35 2.

62

1.
30

1.
30

1.
28 2.

56

9.
82

1.
29 2.

48

4.
84

9.
73 9.
82

1.
29 2.

48

4.
86

9.
76 9.
85

(d) Peak Memory Usage

FIGURE 5.1: Resource Analysis of Preimage Benchmark Job.
Subfigures (a) and (b) illustrate execution and proof cycles using a logarithmic y-scale. Growth in proof size is

depicted in (c), while (d) displays peak RAM consumption for each setting. Cycle data labels are shown in
thousands with the remaining digits truncated. Labels for proof size and RAM usage are rounded to whole

integers and hundredths, respectively.

Chapter 5. Benchmark Results 31

An instance of such a split occurred, for example, in the observations of keccak-256 and
sha3-256 when using 16‘384 input bytes. In both cases, the execution trace was divided into
four segments which totaled 3 ∗ 220 + 218 = 3‘407‘872 proof cycles.

The proof size, illustrated in subfigure (c), deviates from the expected growth pattern.
Despite the doubling of input bytes, it only results in a slightly larger proof file size after
initially remaining constant. This observation aligns with the poly-logarithmic proof size
complexity design in STARK systems, as discussed earlier (see Table 2.1).

Lastly, subfigure (d) provides insight about measured peak RAM consumption for each
setting. As expected, this consumption directly correlates with the number of proof cycles,
which, in turn, is derived from the number of execution cycles. However, RAM consumption
seems to reach its maximum of around 10 GB for two flavors at just 4‘096 input bytes. It
remains at this level despite a much higher amount of proof cycles at 16‘384 input bytes.
The rationale behind this capped development lies in the segment size.

Overall, we conclude that the evolution of execution and proof cycles as well as peak
memory consumption (up to certain limit) positively correlates to the exponentially growing
input bytes. In contrast, the proof size deviates from this trend, remaining at a relatively low
level and exhibiting poly-logarithmic growth, as expected for STARK systems.

Performance

Next, we explore how the observed resource consumption translates into runtimes. Fig-
ure 5.2 summarizes the runtime durations for all three ZKP stages.

Similar to before, each subplot categorizes the observations over different magnitudes on
the x-axis. On the y-axis, the height of the bar represents the required amount of seconds.

Preimage
sha2-256-o sha2-256 blake3 sha3-256 keccak-256

0.0

0.1

0.2

0.3

Se
co

nd
s

0.
02

0.
02

0.
02 0.
03

0.
03

0.
03

0.
02

0.
02 0.
03

0.
03

0.
02

0.
02

0.
02 0.
03 0.

06

0.
03

0.
03 0.
04 0.

07

0.
27

0.
03

0.
03 0.
04 0.

07

0.
27

(a) Execution Duration

64 256 1024 4096 16384
Input Bytes

101

102

103

Se
co

nd
s (

lo
g)

17
.2

5

17
.2

5

17
.2

8

34
.6

4

34
.7

5

34
.7

5

34
.7

0

34
.6

7

34
.7

7

70
.3

0

34
.7

0

34
.6

4

34
.7

7

70
.7

4

31
7.

49

34
.7

4

70
.1

0

14
5.

49

32
1.

49

1,
03

4.
17

34
.7

1

70
.1

3

14
7.

84

32
2.

54

1,
03

9.
94

(b) Proof Duration

64 256 1024 4096 16384
Input Bytes

0.0

0.1

0.2

0.3

Se
co

nd
s

0.
06

0.
06

0.
06 0.
06

0.
06

0.
07

0.
07

0.
06

0.
07

0.
07

0.
07

0.
06

0.
06 0.
07 0.
08

0.
06 0.
07 0.
07 0.
08

0.
30

0.
06 0.
07 0.
07 0.
08

0.
30

(c) Verification Duration

FIGURE 5.2: Performance Analysis of Preimage Benchmark Job
Subfigure (a) illustrates the execution time within the VM for generating the trace table. The creation time of the

STARK proof is depicted in subfigure (b) with a logarithmic y-scale. Subfigure (c) addresses the verification
durations. All data labels are rounded to hundredths.

Chapter 5. Benchmark Results 32

Subfigure (a) shows the execution duration, i.e., the required time to calculate the hash
value and generate the trace. As anticipated, this resides within the millisecond range and
increases proportionally with the exponentially growing input size.

The time required to generate the actual STARK proof is visualized in subfigure (b). Note
that the bar heights are projected on logarithmic y-scale for better readability given the wide
range. The subfigure exhibits high resemblance to the proof cycle visualization in Figure 5.1,
reflecting the positive correlation between cycle count and duration.

Subfigure (c) illustrates the required time to verify the generated proofs. Thanks to the
poly-logarithmic verifying complexity in STARK, the required time for this task evolves
nearly constant to the exponentially growing input sizes. This also mirrors the development
pattern of the proof size.

Takeaways

The performance and resource analysis of the preimage benchmark job results distill to four
takeaways.

Firstly, execution and verification times are orders of magnitude faster than proof generation
time. While execution and verification typically take milliseconds, proving required up to
1‘039.94÷ 60 ≈ 17 minutes. This disparity, however, is inherent to STARK systems.

Secondly, cycle count directly translates into runtime durations. This emphasizes the impor-
tance of exploring different proof logic variants as demonstrated with the selected flavors.
As expected, the optimized hash function sha2-256-o for the RV32IM ISA outperformed all
other tested hash functions in all aspects. Consequently, we exclusively employ sha2-256-o

in the benchmark jobs related to IPs.

Thirdly, we experienced how segment sizing can effectively limit peak RAM utilization. As
mentioned previously, we operate risc0 with the default segment size of 220 cycles. This
allowed us to remain below 10 GB of RAM consumption over all magnitudes.

Lastly, our observations indicate that execution, proof, and verification times scale propor-
tionally to the exponentially growing magnitudes. This is not the case for peak memory
consumption as it does not exceed a certain maximum derived from the chosen segment
size. With these insights in mind, we proceed to examine the benchmark results on the more
sophisticated task of IP proving.

5.3 Inclusion Proof

This section summarizes the results from remaining two benchmark jobs, namely, ip and
ip_batched. In particular, we compare the single IPs as specified in Algorithm 1 with its
batched version. The latter only differentiates from the fact that it stages an array of the
inputs specified in Algorithm 1. Both employ the sha2-256-o hash function as it qualified
as the most efficient option in the previous section.

For conciseness, we consolidate the results from both jobs in the same figures. The flavors
indicate the number of conducted IPs per STARK proof. Note that the flavor «1 IP» originally

Chapter 5. Benchmark Results 33

corresponds to the results from the ip job, which actually allows for different hash function
acting as flavors. However, since we focus on one hash function only, this flavoring approach
is deemed superfluous in this case. While it is technically feasible to introduce a batch size
of 1 in the ip_batched job, it is marginally less efficient than proving a single IP due to the
more complex object staging.

Similar to the preimage job, we perform measurements with exponentially increasing
magnitudes, which, in this case, correspond to tree depths. Ranging from smallest (XS)
to largest (XL), the chosen depths are 4, 8, 16, 32, 64. As mentioned previously, the IP
implementation in ZKit is tailored for perfect binary trees. As a consequence, tree depth
corresponds to the length of the authentication path.

Resource Consumption

As in the previous section, we initially address the resource consumption in Figure 5.3 using
the same four aspects as before.

As anticipated based on insights from the previous section, all metrics exhibit growth
corresponding to the exponentially increasing tree depth. The only deviation from this
pattern is seen in peak memory usage, which once again does not surpass the 10 GB RAM
mark due to the segment size.

Certain executions were again subject to segmentation as can be observed subfigure (b) at
tree depth 64. For example, proving 8 IPs required three segments totaling to 2 ∗ 220 + 218 =

2‘359‘296 proof cycles. Proving 16 IPs in tree with the same depth required even five
segments, resulting in the total of 4 ∗ 220 + 219 = 4‘718‘592 proof cycles. As mentioned

Inclusion Proof (sha2-256-o)

1 IP 2 IPs 4 IPs 8 IPs 16 IPs

213

216

219

222

225

Cy
cle

s (
lo

g)

20
K 34

K 62
K 11

8K 23
0K

41
K 69

K 12
5K 23

7K 46
2K

82
K 13

8K 25
0K 47

4K 92
2K

16
3K 27

5K 49
9K 94

7K 1'
84

4K

32
5K 54

9K 99
8K 1'

89
4K

3'
68

8K

(a) Execution Cycles

216

218

220

222

224

Cy
cle

s (
lo

g)

13
1K

13
1K

13
1K 26

2K 52
4K

13
1K 26

2K

26
2K 52

4K 1'
04

8K

26
2K

26
2K 52

4K 1'
04

8K

1'
31

0K

26
2K 52

4K 1'
04

8K

1'
31

0K 2'
35

9K

52
4K 1'

04
8K

1'
31

0K 2'
62

1K 4'
71

8K
(b) Proof Cycles

4 8 16 32 64
Tree Depth

0

500

1'000

1'500

2'000

Ki
lo

by
te

s

23
8

23
8

23
8

25
0

26
2

23
8

25
0

25
0

26
2

27
5

25
0

25
0

26
2

27
5

52
6

25
0

26
2

27
5

52
6

80
1

26
2

27
5

52
6

81
3

1'
36

4

(c) Proof Size

4 8 16 32 64
Tree Depth

0

2

5

8

10

12

Gi
ga

by
te

s

1.
42

1.
42

1.
43 2.

63

5.
03

1.
44 2.

63

2.
63

5.
04

9.
89

2.
64

2.
64

5.
04

9.
87

9.
96

2.
64

5.
04

9.
88

9.
93

9.
98

5.
05

9.
88

9.
89

9.
92

9.
95

(d) Peak Memory Usage

FIGURE 5.3: Resource Analysis of Single & Batched IP Benchmark Job
Subfigures (a) and (b) illustrate execution and proof cycles using a logarithmic y-scale. Growth in proof size is

depicted in (c), while (d) displays peak RAM consumption for each setting. Cycle data labels are shown in
thousands with the remaining digits truncated. Labels for proof size and RAM usage are rounded to whole

integers and hundredths, respectively.

Chapter 5. Benchmark Results 34

earlier, segmentation introduces additional cycle overhead due to paging. This overhead is
not contained in the expressed execution cycles and explains why, for instance, an execution
of 1‘844K cycles required three segments although 1‘844K ⩽ 2 ∗ 220.

Examining subfigure (a), one sees that inter-flavor cycle ratio remains consistent under
growing tree depths. In other words, the different flavors exhibit a consistent gradation1

over all magnitudes. Intuitively, executing a program that performs an action x times
more frequently is also x times computationally more expensive. Thus, dividing the cycle
counts of each flavor > 1 IP by the cycle count of 1 IP roughly corresponds to the batch
size. At tree depth 64, for instance, this evaluates to {462K, 922K, 1‘844K, 3‘688K} ÷ 230K ≈
{2.01, 4.01, 8.01, 16.03}.

Interestingly, the same flavor gradation does not hold for proof cycles, as illustrated in
subfigure (b). Repeating the calculation from before for the same tree depth confirms
this as it evaluates to {1‘048K, 1‘310K, 2‘359K, 4‘718K} ÷ 524K ≈ {2.00, 2.50, 4.50, 9.01}.
Consequently, proving a batch of x actions necessitates < x times more computational effort.
Put differently, the effort to prove batched IPs grows asymmetrically with increasing batch
sizes. This advantageous property can be harnessed to improve efficiency.

Performance

Continuing with performance-related aspects, we examine how the execution and proof
cycles translate into runtime. Figure 5.4 visualizes the results of these aspects.

Both (a) execution and (c) verification duration reside again in the millisecond range and
evolve according to the exponentially growing tree depth, shown in the x-axis. As in
the preimage job, both durations exhibit positive correlation with observations related
to resource consumption. Specifically, there exists a direct proportional relation between
execution cycles and duration as well as proof size and verification time.

Inclusion Proof (sha2-256-o)
1 IP 2 IPs 4 IPs 8 IPs 16 IPs

0.0

0.2

0.4

0.6

Se
co

nd
s

0.
03

0.
03

0.
03 0.
04 0.
05

0.
03

0.
03 0.
04 0.
05 0.
07

0.
03 0.
04 0.
05 0.
07 0.

14

0.
04 0.
05 0.
07 0.

14

0.
26

0.
06 0.
08 0.

15

0.
26

0.
48

(a) Execution Duration

4 8 16 32 64
Tree Depth

102

103

Se
co

nd
s (

lo
g)

34
.7

2

34
.7

2

34
.9

4

70
.7

6

14
6.

11

34
.8

9

70
.6

8

70
.8

3

14
7.

18

31
8.

72

70
.2

0

70
.5

4

14
6.

78

32
0.

41

38
5.

41

70
.8

6

14
5.

76

32
2.

84

38
9.

66

70
7.

60

14
6.

55

31
6.

06

39
9.

20

79
2.

93

1,
42

3.
17

(b) Proof Duration

4 8 16 32 64
Tree Depth

0.0

0.1

0.2

0.3

0.4

Se
co

nd
s

0.
06

0.
06

0.
06

0.
07 0.
08

0.
07 0.
07

0.
07 0.
07 0.
08

0.
07

0.
07 0.
07 0.
08

0.
15

0.
07 0.
07 0.
08

0.
15

0.
22

0.
07 0.
08

0.
15

0.
23

0.
39

(c) Verification Duration

FIGURE 5.4: Performance Analysis of Single & Batched IP Benchmark Job
Subfigure (a) illustrates the execution time within the VM for generating the trace table. The creation time of the

STARK proof is depicted in subfigure (b) with a logarithmic y-scale. Subfigure (c) addresses the verification
durations. All data labels are rounded to hundredths.

1 Gradation denotes a step-by-step progress characterized by a series of regular incremental advancements.

Chapter 5. Benchmark Results 35

These relatively quick runtimes, however, do not extend to the proof duration, as shown in
subfigure (b). It requires about 34.72÷ 60 ≈ 1

2 minute in the simples and around 1‘423.17÷
60 ≈ 24 minutes in the most complex case to generate the STARK proof. Nevertheless, the
previously stated insight regarding the asymmetric relationship between batch size and
cycle complexity applies here again. At three depth 8, for instance, proving a batch of 8 IPs
at once requires only 145.76÷ 34.72 ≈ 4.2x more time than proving a single IP and not 8x.
This positive finding underscores the efficiency gains achievable through batching.

Takeaways

Analyzing the IP benchmark jobs using the previously declared most efficient sha2-256-o
hash function infers the following two takeaways.

Firstly, the observations regarding the relationships between the examined aspects made in
the more straightforward preimage job could be revisited, speaking for consistency. This
includes, for example, the notion that more cycles result in longer runtime and that the
segment size limits peak memory usage.

The second takeaway concern the asymmetric relationship between proving IPs in a batched
setting versus sequentially in a single setting. This implies a significant impact on overall
performance, considering that proving constitutes the most time-consuming stage in ZKPs.
Consequently, we dedicate the remainder of this section to a more detailed exploration of
this property.

Performance Gain of Batched Settings Relative to Single Settings

To analyze the discovered asymmetric relationship between batched and single IP proofs
more thoroughly, we determined the multiplication factors for all flavors > 1 IP over all
measured tree depths relative to 1 IP in Figure 5.5. This relative analysis is only conducted
on the duration aspects, as they derive from cycle count or proof size and convey the most
intuitive or tangible message to the readership. Each data point represents the multiplication

Batched IPs in Relation to Single IP (sha2-256-o)
2 IPs 4 IPs 8 IPs 16 IPs2 IPs 4 IPs 8 IPs 16 IPs2 IPs 4 IPs 8 IPs 16 IPs

4 8 16 32 64
Tree Depth

2.0x

4.0x

6.0x

8.0x

10.0x

M
ul

tip
lic

at
io

n
Fa

ct
or

 w
.r.

t.
Si

ng
le

 IP

(a) Execution Duration

4 8 16 32 64
Tree Depth

2.0x

4.0x

6.0x

8.0x

10.0x

(b) Proof Duration

4 8 16 32 64
Tree Depth

1.0x

2.0x

3.0x

4.0x

5.0x
(c) Verification Duration

FIGURE 5.5: Comparative Duration of Batched IPs Relative to Single IP.
All subfigures visualize data derived from the duration ratio between batched and single IP setting.

This relative analysis is conducted on (a) execution, (b) proof, and (c) verification duration.

Chapter 5. Benchmark Results 36

factor shown on the y-axis, resulting from dividing the measurements from the batched
setting by those from the single setting.

The multiplication factors for (a) execution and (c) verification duration exhibit a similar
pattern, increasing proportionally with the rising tree depth. The batched-single-ratio for
verification duration, however, scales at a slower rate than for execution. For instance,
up until tree depth 8, all batch sizes require more or less the same amount of time than
verifying a proof containing a single IP. In contrast, the multiplication factor of the flavors
in execution duration diverges from the beginning.

Even more interestingly is the proof duration in subfigure (b). For example, proving 8 IPs at
tree depth 4 requires approximately 2x as much time than proving a single IP. Consequently,
the batched proof is 8

2 = 4x faster than proving 8 single IPs sequentially. Even in the
most computationally expensive setting of proving 16 IPs at tree depth 64, batching yields
approximately 16

9.8 ≈ 1.6x faster runtime than the single strategy.

This speed-up factor, however, does not scale consistently, as the hump between tree depth
16 an 32 suggests. At tree depth 8, for instance, proving 8 IPs requires more than 9x the
duration of a single IP proof. Ergo, the batched setting is less performant than the single
setting in this case. The reason for this hump lies in the step-wise proof cycle relationship
prevalent in risc0.

To gain a deeper understanding of the individual performance gains or losses, we introduce
the following notation. Let tn be the time required to prove a batch of n IPs, while ts denotes
the time to prove a single IP. Accordingly, ts ∗ n presents the projected time to prove the
same number of IPs sequentially as in the batched setting that lasts for tn. To determine
the relative performance gain that arises from proving batched IPs, we calculate the ration
between ts ∗ n and tn. Equation 5.1 states this formally.

Percentage Gain = Gp =
ts ∗ n

tn
− 1 (5.1)

The results are shown in Table 5.2. It indicates all Gp for all evaluated batch sizes and tree
depths, structured in the three focused aspects shown in Figure 5.5.

Green cells denote positive gains, which means that proving batched IPs is faster than
proving the same amount of IPs one after the other. Conversely, red cells indicate negative
gain, implying that the batched setting is slower compared to the single proving strategy.
Boldfaced values highlights the extrema for each individual aspect.

Across all experimental settings, batching consistently delivers faster execution and ver-
ification runtimes. Verifying a proof at batch size 16 and tree depth 4 exhibits the most
remarkable performance improvement with Gp = 1‘303.64%. In other words, batching is
approximately 14x faster in this case2.

However, certain proof duration settings exhibit performance degradation when utilizing
batching. This observation corresponds to the aforementioned hump depicted in Figure 5.5,
subfigure (b). For example, proving 8 IPs at tree depth 16 incurs a 13.41% performance

2 The factor is determined by 1 + Gp ∗ 0.01

Chapter 5. Benchmark Results 37

Aspect Batch
Size n

Gp per Tree Depth
Average

4 8 16 32 64
Ex

ec
ut

io
n

D
ur

at
io

n 2 86.05% 68.09% 56.76% 63.77% 35.96% 62.12%
4 229.9% 165.55% 140% 113.21% 30.81% 135.89%
8 447.01% 305.13% 216.36% 112.71% 42.45% 224.73%

16 675.76% 444.83% 216.36% 127.99% 52.7% 303.53%

Pr
oo

f
D

ur
at

io
n 2 99.03% -1.76% -1.33% -3.85% -8.32% 16.76%

4 97.84% 96.84% -4.77% -11.66% 51.64% 45.98%
8 292.01% 90.53% -13.41% 45.28% 65.19% 95.92%

16 279.09% 75.74% 40.06% 42.78% 64.26% 100.39%

Ve
ri

fic
at

io
n

D
ur

at
io

n 2 95.94% 85.65% 88.35% 85.52% 92.59% 89.61%
4 272.95% 280.39% 252.73% 253.45% 110.81% 234.07%
8 653.17% 608.68% 566.09% 268.54% 178.57% 455.01%

16 1‘303.64% 1‘232.19% 603.85% 379.53% 223.04% 748.45%

TABLE 5.2: Prove Duration Gain of Batched IPs Relative to Single IP
Cells highlighted in green indicate that a batched setting is faster to prove compared to the equivalent work in a

single setting. Red cells highlight cases in which a batched setting is slower to the single setting.
Bold font emphasizes the extrema per aspect.

loss compared to processing the same workload sequentially. Nonetheless, when weighed
against the overall gains, these measured losses are relatively modest in terms of percentage.

Based on the average values in the right-hand column, one can conclude two points. First,
batch-processing multiple IPs can significantly enhance performance in risc0 over all three
ZKP stages. Second, the performance gain generally tends to increase with larger batch
sizes. However, given the hardly pre-determinable execution cycles and the step-wise prove
cycle development, detailed testing of individual settings remains essential as performance
improvement is not universally guaranteed.

38

6 Discussion

In this chapter, we discuss important aspects of the presented content, intertwined with
personal reflections and recommendations. In particular, the discussion focuses on the
experiences made with Risc in the context ZKit. An outlook to future work concludes the
chapter.

RISC Zero

Our experiences with the risc0 framework were eminently positive. The available libraries
and tools makes it accessible for new developers in this space and are intuitive to handle.
Also, there exists an attentive community and insightful documentation and explanation
material.

Solely during the course of this thesis, numerous risc0 upgrades were published which
speaks for the velocity this project evolves. This, however, may not be compared to other
open-source projects as it is pushed primarily by the RISC Zero Incorporation1. A major
focus in the advancement of risc0 seems to be the interoperability with Bonsai2, a blockchain-
based infrastructure which is, among others, offered to outsource the computationally
expensive proof creation. Although this endeavour is still in development, it seems to
geared towards a future source of income.

Unfortunately, we could not see the same advancement velocity targeted to technical and
mathematical specifications. The mentioned material document [29] in this regard resides
since the start of this thesis in draft mode. These efforts towards comprehensibility, however,
are inevitable to pave the way for eventual cryptographic audits. Both is essential for risc0
to qualify as a candidate framework for productive systems.

ZKit

Although the development of a toolkit consumed lot of efforts, it turned out to be an
rewarding automation environment for probing with ZKPs. Especially in complex systems,
automation allows to effortlessly ensure correctness and allows for consistency. Our initial
development effort to setup ZKit was later more than rewarded, as additional costs to test
other settings or implementations were negligible small. Although we did not do this, but
technically one could also integrate the CLI into CI pipelines for the purpose of further
automation.

As addressed in Section 4.3, extending ZKit with further ZKP frameworks may infers re-
implementing existing logic due to the various proving paradigms. While ZKit serves as an

1 See company information and filings in the EDGAR database.
2 See Bonsai overview for details.

https://www.sec.gov/edgar/browse/?CIK=0001930617
https://dev.risczero.com/api/bonsai/

Chapter 6. Discussion 39

integration environment for such heterogeneous systems, establishing and executing com-
parable benchmark disciplines across multiple frameworks can therefore present a delicate
challenge. Developers bear the responsibility of ensuring a consistent implementation of a
specific discipline under benchmarking across all frameworks. This concerns, for example,
that two programs that both verify an IP minimize their differences in total operations, given
the same input. In cases where substantial differences cannot be avoided, we recommend
to refrain from comparing benchmark results between frameworks. Otherwise one risks
conclusion making based on comparisons of apples and oranges.

At the time of writing, ZKit is not available open-source as it is subject to contractual
agreements. We anticipate, however, to open-source ZKit in future after completing ongoing
refinements and optimizations. This approach ensures a cleaner and more robust codebase
for the sake of an enhanced user experience for both users and contributors.

Future Work

Future work bears substantial potential through various trials. First and foremost, we antici-
pate including further ZKP frameworks into ZKit. This would not only enrich the enrich
the variety of different ZKP paradigms but also audit the practicability and reasonableness
of the proposed ZKit system architecture. This also implicates completing and extending
the automated plot functionality to account for inter-framework result analysis.

Next, additional benchmark jobs could analyze a greater variety of disciplines or imple-
mentation strategies. For example, IP functionality could be extend to also account for
non-perfect binary trees which in turn increases the complexity of the shared IP file. Also,
one could investigate performance differences among different devices or machines, includ-
ing smartphones.

To delve further into benchmarking risc0, for instance, one could examine various segment
sizes and their implications on runtimes. Another interesting avenue for exploration involves
examining the potential to outsource the VM to dedicated RISC-V hardware components.
Such an approach might mitigate the computational overhead needed for VM initialization
and cleanup.

Futhermore, future work may concern examine the presented porting strategy to Go. Posable
question involve whether the measured performances replicates in the Go wrapper library
and if there exists more efficient porting strategies than using FFI. Equally important are
investigations into brining ZKP functionality to other mainstream programming languages
such as Python or C#. At the end, it is the accessibility to ZKP technologies that bears the
highest potential to advance wide adoption and thus should attract high attention.

40

7 Conclusion

Implementing ZKPs in practical applications poses considerable challenges, demanding
thorough testing and ongoing optimizations. This is especially true for STARK systems,
the primary focus of this thesis as they do not require a trusted setup and solely rely on
secure hash function, making them post-quantum secure. While the efficiency of verifying
STARK proofs is commendable, their creation currently requires a considerable amount of
time and resources, which as of today impedes practical applications. In the realm of digital
cash, for example, such practical applications involve integrating ZKP in software wallets
that eventually run on standard smartphones. Thus, we anticipate outsourcing to trusted
custodial services or personal home severs acting as a backend could offer a viable solution
to this problem in the long run.

Existing ZKP frameworks strive to enhance accessibility for developers by abstracting
the complexity of these proof systems. We discussed a few promising frameworks while
emphasizing the trade-offs between direct and indirect proving approaches. The indirect
proving approach embraced in RISC Zero introduces a notable advantage in the simplicity
of circuit definition through the use of general-purpose programming languages. Despite
the accompanying increase in system complexity and overhead, this approach provides a
crucial level of flexibility that allows fast adaption to new requirements.

Furthermore, our IP experiments with RISC Zero have notably demonstrated that consol-
idating multiple actions into a single STARK proof results in substantial efficiency gains
compared to proving each action individually. This discovery underscores the practical
importance of adopting a batching strategy in ZKP applications to enhance overall efficiency.

Finally, the complexity of defining ZKP circuits underscores the utility of our test and
benchmark suite ZKit. It allowed us to implement and analyze use cases the wide range
of different influence factors, such as chosen hash function, tree depth, or batch size in
an automated and replicable manner. We envision ZKit as an useful tool for developers,
empowering them to extract decision-supporting insights about ZKP frameworks and
streamline their development processes.

41

Bibliography

[1] R. C. Merkle. “Method of providing digital signatures”. U.S. pat. 4309569A. Univ
Leland Stanford Junior. Jan. 5, 1982. URL: https://patents.google.com/patent
/US4309569A/.

[2] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. Oct. 31, 2008.

[3] R. Bögli. “Zero-Knowledge Inclusion Proofs”. Focus Project 2. Rapperswil-Jona: East-
ern Switzerland University of Applied Science (OST), Aug. 21, 2023.

[4] D. Benarroch et al. “Community Proposal: A Benchmarking Framework for (Zero-
Knowledge) Proof Systems”. In: QEDIT, Tel Aviv-Yafo, Israel, Tech. Rep (Apr. 9, 2020).
URL: https://docs.zkproof.org/pages/standards/accepted-workshop3/propos
al-benchmarking.pdf.

[5] Y. Gong et al. “Analysis and comparison of the main zero-knowledge proof scheme”.
In: 2022 International Conference on Big Data, Information and Computer Network (BDICN).
2022 International Conference on Big Data, Information and Computer Network
(BDICN). Jan. 2022, pp. 366–372. DOI: 10.1109/BDICN55575.2022.00074.

[6] Polybase Labs. zk-bench. Nov. 27, 2023. URL: https://zkbench.dev/ (visited on
11/27/2023).

[7] zk-benchmarking. Delendum, Nov. 27, 2023. URL: https://github.com/delendum-xyz
/zk-benchmarking/ (visited on 11/27/2023).

[8] J. Ernstberger et al. zk-Bench: A Toolset for Comparative Evaluation and Performance
Benchmarking of SNARKs. Cryptology ePrint Archive, Paper 2023/1503. 2023. URL:
https://eprint.iacr.org/2023/1503.

[9] zk-Harness. zkCollective, Nov. 27, 2023. URL: https://github.com/zkCollective/zk
-Harness (visited on 11/27/2023).

[10] zkp-compiler-shootout. Anoma, Nov. 12, 2023. URL: https://github.com/anoma/zkp-
compiler-shootout (visited on 11/27/2023).

[11] Celer. The Pantheon of Zero Knowledge Proof Development Frameworks (Updated!) Celer
Network. Aug. 5, 2023. URL: https://blog.celer.network/2023/08/04/the
- pantheon- of- zero- knowledge- proof- development- frameworks/ (visited on
11/30/2023).

[12] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof-System”. In: Proceedings of the seventeenth annual ACM symposium on Theory of
computing. STOC ’85. New York, NY, USA: Association for Computing Machinery,
Dec. 1, 1985, pp. 291–304. ISBN: 978-0-89791-151-1. DOI: 10.1145/22145.22178.

[13] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge and Its Appli-
cations”. In: Proceedings of the twentieth annual ACM symposium on Theory of computing.

https://patents.google.com/patent/US4309569A/
https://patents.google.com/patent/US4309569A/
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-benchmarking.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-benchmarking.pdf
https://doi.org/10.1109/BDICN55575.2022.00074
https://zkbench.dev/
https://github.com/delendum-xyz/zk-benchmarking/
https://github.com/delendum-xyz/zk-benchmarking/
https://eprint.iacr.org/2023/1503
https://github.com/zkCollective/zk-Harness
https://github.com/zkCollective/zk-Harness
https://github.com/anoma/zkp-compiler-shootout
https://github.com/anoma/zkp-compiler-shootout
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://doi.org/10.1145/22145.22178

Bibliography 42

STOC ’88. New York, NY, USA: Association for Computing Machinery, Jan. 1, 1988,
pp. 103–112. ISBN: 978-0-89791-264-8. DOI: 10.1145/62212.62222.

[14] O. Goldreich, S. Micali, and A. Wigderson. “Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: Journal of
the ACM 38.3 (July 1991), pp. 690–728. ISSN: 0004-5411, 1557-735X. DOI: 10.1145/1168
25.116852.

[15] J.-J. Quisquater et al. “How to Explain Zero-Knowledge Protocols to Your Children”.
In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by G. Brassard. Vol. 435.
New York, NY: Springer New York, 1990, pp. 628–631. ISBN: 978-0-387-97317-3. DOI:
10.1007/0-387-34805-0_60.

[16] J. Thaler. “Proofs, Arguments, and Zero-Knowledge”. In: Foundations and Trends® in
Privacy and Security 4.2–4 (2022), pp. 117–660.

[17] R. Bögli. “A Security Focused Outline on Bitcoin Wallets”. Focus Project 1. Rapperswil-
Jona: Eastern Switzerland University of Applied Science (OST), Mar. 7, 2023. URL:
https://eprints.ost.ch/id/eprint/1103/.

[18] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by A. M.
Odlyzko. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1987,
pp. 186–194. ISBN: 978-3-540-47721-1. DOI: 10.1007/3-540-47721-7_12.

[19] E. Ben-Sasson et al. “Succinct Non-Interactive Zero Knowledge for a von Neumann
Architecture”. In: 23rd USENIX Security Symposium (USENIX Security 14). USENIX
Association, 2014, pp. 781–796. ISBN: 978-1-931971-15-7. URL: https://www.usenix.o
rg/conference/usenixsecurity14/technical-sessions/presentation/ben-sas

son.

[20] E. Ben-Sasson et al. Scalable, transparent, and post-quantum secure computational integrity.
Cryptology ePrint Archive, Paper 2018/046. 2018. URL: https://eprint.iacr.org/2
018/046.

[21] E. Ben-Sasson. A Cambrian Explosion of Crypto Proofs. NAKAMOTO. Jan. 8, 2020. URL:
https://nakamoto.com/cambrian- explosion- of- crypto- proofs/ (visited on
08/04/2023).

[22] A. M. Tran. “Theoretical and practical introduction to ZK-SNARKs and ZK-STARKs”.
MA thesis. Masaryk University, Faculty of Informatics, 2022. URL: https://is.muni
.cz/th/ovl3c/.

[23] L. T. Thibault, T. Sarry, and A. S. Hafid. “Blockchain Scaling Using Rollups: A Com-
prehensive Survey”. In: IEEE Access 10 (2022), pp. 93039–93054. ISSN: 2169-3536. DOI:
10.1109/ACCESS.2022.3200051.

[24] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In: Journal
of the Society for Industrial and Applied Mathematics 8.2 (June 1960), pp. 300–304. ISSN:
0368-4245, 2168-3484. DOI: 10.1137/0108018.

[25] T. Dokchitser and A. Bulkin. Zero knowledge virtual machine step by step. Cryptology
ePrint Archive, Paper 2023/1032. 2023. URL: https://eprint.iacr.org/2023/1032.

https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1007/0-387-34805-0_60
https://eprints.ost.ch/id/eprint/1103/
https://doi.org/10.1007/3-540-47721-7_12
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://nakamoto.com/cambrian-explosion-of-crypto-proofs/
https://is.muni.cz/th/ovl3c/
https://is.muni.cz/th/ovl3c/
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.1137/0108018
https://eprint.iacr.org/2023/1032

Bibliography 43

[26] E. Ben-Sasson, L. Goldberg, and D. Levit. STARK Friendly Hash – Survey and Recom-
mendation. Cryptology ePrint Archive, Paper 2020/948. 2020. URL: https://eprint.i
acr.org/2020/948.

[27] BaarkingDog. ZK-Friendly Hash Functions. Zellic. May 30, 2023. URL: https://www.ze
llic.io/blog/zk-friendly-hash-functions (visited on 09/21/2023).

[28] Miden VM. Version v0.7.0. Polygon, Oct. 11, 2023. URL: https://github.com/0xPoly
gonMiden/miden-vm (visited on 12/02/2023).

[29] J. Bruestle and P. Gafni. “RISC Zero zkVM: Scalable, Transparent Arguments of RISC-V
Integrity”. Draft. July 29, 2023. URL: https://www.risczero.com/proof-system-in-
detail.pdf (visited on 08/05/2023).

[30] risc0. RISC Zero, 2023. URL: https://github.com/risc0/risc0 (visited on 08/05/2023).

[31] StarkWare. Open-Sourcing the Battle-Tested Stone Prover. StarkWare. Aug. 22, 2023. URL:
https://medium.com/starkware/open-sourcing-the-battle-tested-stone-pro

ver-1fe71aaab3b7 (visited on 12/04/2023).

[32] stone-prover. StarkWare, 2023. URL: https://github.com/starkware-libs/stone-p
rover (visited on 12/04/2023).

[33] J. F. Sauer. triton-vm. Version v0.35.0. Oct. 5, 2023. URL: https://github.com/Triton
VM/triton-vm (visited on 12/04/2023).

[34] M. Gillet et al. Valida. 2023. URL: https://github.com/valida-xyz/valida (visited
on 08/05/2023).

[35] Winterfell. Meta, 2023. URL: https://github.com/facebook/winterfell (visited on
08/05/2023).

[36] Zilch. Trustworthy Computing Group, 2023. URL: https://github.com/Trustworth
yComputing/Zilch (visited on 08/05/2023).

[37] K. Asanović and D. A. Patterson. Instruction sets should be free: The case for RISC-V.
EECS Department, University of California, Berkeley, Aug. 2014. URL: http://www2
.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html.

[38] RISC-V Foundation. “RISC-V Instruction Set Manual”. URL: https://github.com/ri
scv/riscv-isa-manual (visited on 12/07/2023).

[39] J. Winans. RISC-V Assembly Language Programming. Draft v0.18.1-0-g23bd3ad. Oct. 19,
2022. URL: https://github.com/johnwinans/rvalp/.

[40] T. Zerrell. Using Continuations to Prove Any EVM Transaction. RiscZero. May 22, 2023.
URL: https://www.risczero.com/news/continuations (visited on 12/30/2023).

[41] S. Verdi. Why Rust is the most admired language among developers. The GitHub Blog.
Aug. 30, 2023. URL: https://github.blog/2023-08-30-why-rust-is-the-most-a
dmired-language-among-developers/ (visited on 12/06/2023).

[42] S. Klabnik and C. Nichols. The Rust Programming Language. 2nd edition. San Francisco:
No Starch Press, 2023. 527 pp. ISBN: 978-1-71850-311-3.

[43] cbindgen. Mozilla, Dec. 13, 2023. URL: https://github.com/mozilla/cbindgen
(visited on 12/15/2023).

https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2020/948
https://www.zellic.io/blog/zk-friendly-hash-functions
https://www.zellic.io/blog/zk-friendly-hash-functions
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xPolygonMiden/miden-vm
https://www.risczero.com/proof-system-in-detail.pdf
https://www.risczero.com/proof-system-in-detail.pdf
https://github.com/risc0/risc0
https://medium.com/starkware/open-sourcing-the-battle-tested-stone-prover-1fe71aaab3b7
https://medium.com/starkware/open-sourcing-the-battle-tested-stone-prover-1fe71aaab3b7
https://github.com/starkware-libs/stone-prover
https://github.com/starkware-libs/stone-prover
https://github.com/TritonVM/triton-vm
https://github.com/TritonVM/triton-vm
https://github.com/valida-xyz/valida
https://github.com/facebook/winterfell
https://github.com/TrustworthyComputing/Zilch
https://github.com/TrustworthyComputing/Zilch
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/johnwinans/rvalp/
https://www.risczero.com/news/continuations
https://github.blog/2023-08-30-why-rust-is-the-most-admired-language-among-developers/
https://github.blog/2023-08-30-why-rust-is-the-most-admired-language-among-developers/
https://github.com/mozilla/cbindgen

Bibliography 44

[44] National Institute of Standards and Technology (NIST). Secure Hash Standard (SHS).
FIPS 180-4. U.S. Department of Commerce, Aug. 4, 2015. DOI: 10.6028/NIST.FIPS.1
80-4.

[45] J. O’Connor et al. BLAKE3: one function, fast everywhere. available online, Nov. 2, 2021.
URL: https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
(visited on 12/28/2023).

[46] X. Zou et al. “Accelerating Blake3 in RISC-V”. In: 2023 2nd International Conference
on Computing, Communication, Perception and Quantum Technology (CCPQT). 2023 2nd
International Conference on Computing, Communication, Perception and Quan-
tum Technology (CCPQT). Xiamen, China: IEEE, Aug. 4, 2023, pp. 296–301. ISBN:
9798350342697. DOI: 10.1109/CCPQT60491.2023.00057.

[47] National Institute of Standards and Technology (NIST). SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. FIPS 202. U.S. Department of Commerce,
Aug. 4, 2015. DOI: 10.6028/NIST.FIPS.202.

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1109/CCPQT60491.2023.00057
https://doi.org/10.6028/NIST.FIPS.202

45

List of Abbreviations

AIR Algebraic Intermediate Representation . 8
API Application Programming Interface . 19
ASM Assembly . 11
CBDC Central Bank Digital Currency . 2
CI Continuous Integration . 19
CISC Complex Instruction Set Computing . 12
CLI Command Line Interface . 3
CP Compositional Polynomial . 9
CPU Central Processing Unit . 11
DLP Discrete Logarithm Problem . 6
ELF Executable and Linkable Format . 14
FFI Foreign Function Interface . 18
FRI Fast Reed-Solomon Interactive Oracle Proofs of Proximity 9
FTS Fabric Token-SDK . 3
IP Inclusion Proof . 1
ISA Instruction Set Architecture . 1
JFS Job-Flavor-Size . 25
RAM Random Access Memory . 16
RISC Reduced Instruction Set Computer . 1
ROM Random Oracle Model . 6
SNARK Succinct Non-Interactive Argument of Knowledge i
SPV Simple Payment Verification . 1
STARK Scalable Transparent Argument of Knowledge i
VM Virtual Machine . 1
ZKP Zero-Knowledge Proof . 1
zkVM Zero-Knowledge Virtual Machine . 10

46

List of Figures

2.1 Direct vs. Indirect ZKP Approach . 10

3.1 Sequence Diagram of risc0 Proof & Verify Process 13
3.2 Execution-Prove-Cycle Relation . 15

4.1 ZKit Component Diagram . 17
4.2 Rust to Go Compile Process . 20
4.3 Screenshot of the ZKit CLI . 21

5.1 Resource Analysis of Preimage Benchmark Job. 30
5.2 Performance Analysis of Preimage Benchmark Job 31
5.3 Resource Analysis of Single & Batched IP Benchmark Job 33
5.4 Performance Analysis of Single & Batched IP Benchmark Job 34
5.5 Comparative Duration of Batched IPs Relative to Single IP. 35

47

List of Tables

2.1 Key Differences between SNARK and STARK . 8
2.2 STARK-based ZKP Frameworks . 11

5.1 Available Benchmark Jobs in ZKit . 28
5.2 Prove Duration Gain of Batched IPs Relative to Single IP 37

48

List of Listings

1 Example Guest Method in Rust . 14
2 Bash Command to Create IP . 21
3 Example IP as JSON . 22
4 Bash Command to Create ZKP of IP . 23
5 Bash Command to Verify ZKP of IP . 24
6 Bash Command to Execute Benchmarks . 25

49

List of Algorithms

1 Inclusion Proof Verification in Perfect Binary Tree Situations 23

	Abstract
	Declaration of Authorship
	Foreword
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.2 Contribution
	1.3 Related Work
	1.4 Outline

	2 Zero-Knowledge Proof Systems
	2.1 Characteristics
	2.2 Implementations

	3 Risc Zero Framework
	3.1 RISC-V Instruction Set Architecture
	3.2 Proving & Verifying Process

	4 ZKit Test and Benchmark Suite
	4.1 System Architecture
	4.2 CLI Functionalities
	4.3 Extensibility

	5 Benchmark Results
	5.1 Setting
	5.2 Preimage
	5.3 Inclusion Proof

	6 Discussion
	7 Conclusion
	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables

