

Temporal Logics Meet Real-World
Software Requirements:

A Reality Check

13th International Conference on Formal Methods in Software Engineering (FormaliSE)

2025-04-27, Ottawa CA

Roman Bögli * · Atefeh Rohani * · Thomas Studer * · Christos Tsigkanos◇ · Timo Kehrer *

* University of Bern, Switzerland · ◇ University of Athens, Greece

Introduction

4

Formalizing Software Requirements
Introduction

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

Problem Solution

toy examples

logical
frameworks

expressiveness

new specific
operators

solution-oriented

problem-oriented

requirement
catalogue

ambiguity

tacit
knowledge

different levels
of depth

5

Our Study Scope: Temporal Logics
Introduction

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Jungle of logics

TPTL

LTL
CTL

MTL

PCTL

STL

...MITL

6

Our Study Subject: SpaceWire Protocol
Introduction

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Standard specification for a data handling network (e.g. on spacecrafts)

Methodology

8

Overview
Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

I. Requirements Selection

Req1:
Req2:
Req3:

extract

II. Formalization

Formula1: ...
Formula2: ...
Formula3: ...

build

formalize

III. Quantitative Analysis

analyze

discuss implications

• Functional software requirements with notion of temporal behavior.

• Examples

‒ “Null detection shall be enabled whenever the receiver is enabled.”

‒ “The line receiver shall maintain correct operation for differential
input voltages of up to 600 mV magnitude.”

‒ “Zero or more data characters at the front of a packet shall form a
destination address.”

9

I. Requirement Selection
Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

non-functional

no temporal notion

• Striving for natural formalizations

• Criteria
‒ Solely based on temporal operators present in the requirement.

‒ Used logic is minimal, i.e., just expressive enough to capture the requirement.

‒ Compact formulizations are favored over longer ones.

• Example “Between now and 𝑛, it should always be 𝐴.”
‒ LTL

10

II. Formalization
Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

more natural

‒ MITL

11

III. Quantitative Analysis – RQ1
Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

‒ MITL

translates

What is the distribution of natural logics used for the transcribed SpaceWire
requirements, and can they be mutually translated?

• Motivation
‒ Prevalence, trends, outliers

‒ Framework restrictions, tool support

• Example
‒ LTL

12

Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

comparecount

III. Quantitative Analysis – RQ2

variables

• Included metrics
‒ AST height (ASTH)

‒ # atomic propositions (APs)

‒ # comparison operators (COPs)

‒ # logical operators (LOPs)

‒ # temporal operators (TOPs)

‒ Shannon entropy

What is the engineering complexity of the natural formulae for a transcribed
SpaceWire requirement, and does it differ among the logics?

• Motivation

13

Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

III. Quantitative Analysis – RQ2

• Included metrics
‒ ASTH

‒ # APs

‒ # COPs

‒ # LOPs

‒ # TOPs

‒ Shannon entropy

⇒ 5

⇒ { y, u_eq_9, i_gt_3} = 3

⇒ {=, <} = 2

⇒ {∧, ∨, →, ¬} = 4

⇒ { , } = 2

chosen in terms of our study, we include the MITL path with
unbounded intervals in our decision tree illustrated in Fig. 1.

Lastly, we note that MTL in general and MTLb in particular
may be defined based on different models of time, which
can be discrete or continuous [36] implying different seman-
tics [14], [37] (i.e., pointwise vs. continuous semantics). While
this did not influence the logics selection process in terms
of our natural formalization, we found pointwise semantics
sufficient for the SpaceWire case, as time constraints required
only natural numbers, with no need for real numbers.

Coping with signal rates and quantities. Last but not
least, certain requirements contain the concept of signal,
predicating over a signaling rate or quantity in each moment
of time. R8 and R9 exemplify this. Consequently, requirements
containing propositions on resetting signals or external action
on the signals are not contained in STL as they sufficiently
formalized in LTL (following our characteristics on natural
formalizations). To this end, we employ Signal Temporal Logic
(STL) [38], [39], where at any time point a real number
denoted by S(t) is assigned, capturing the signal amount in
t as the signal rate. Such requirements are deemed a special
case, yielding a branch in the decision process.

IV. QUANTITATIVE ANALYSIS OF FORMULAE

This section presents the results of a quantitative analysis
of the 89 formulae naturally specifying the 89 requirements
extracted from the SpaceWire document. The analysis was
guided by the following two research questions:

RQ1: What is the distribution of natural logics used
for the transcribed SpaceWire requirements, and can they be
mutually translated?

RQ2: What is the engineering complexity of the natural
formulae for a transcribed SpaceWire requirement and does it
differ among the logics?

The rationale behind RQ1 is twofold. First, by studying the
distribution of the natural formalizations over the respective
logical frameworks, we aim to spot general trends and outliers.
Second, we account for the fact that natural formalizations are
not necessarily the only possible ones. As noted at the end of
Section III-A, a time-bounded requirement is most naturally
formalized in MTLb but can also be translated into LTL. To
that end, we analyze whether a given formalized requirement
can also be translated into another logical framework. We
deem a given formalization as conditionally translatable if cer-
tain assumptions are required due to varying underlying tem-
poral models. As we are only considering translations within
the set of logics obtained during the formalization process, we
speak of mutual translatability. Note that the translatability of
each formalized requirement must be assessed c → 1 times,
where c is the number of distinct logical frameworks used in
the formalizations. Let further n be the number of formalized
requirements, a total of n(c→ 1) translation decisions – each
classified as either yes, no, or conditional – must be made.

The second guiding research question RQ2 examines what
we term the engineering complexity of all natural formaliza-
tions across the logics. This term is used to distinguish our fo-

cus from computational complexity, which is not the subject of
this study. Specifically, we use the syntax structure of logical
formulae as a proxy for engineering complexity. To that end,
we analyze the abstract syntax tree (AST) of each formula,
collecting quantitative metrics characterizing the complexity
of the AST. Metrics include the level of nesting or AST
height (ASTH), counts of logical operators (LOPs), temporal
operators (TOPs), atomic propositions (APs), and comparison
operations (COPs) within the APs if such where appearing
in requirements treated. As we contemplate that engineering
complexity positively correlates with the diversity of operators
present in a given formula, we additionally determine the
Shannon entropy [40] to measure the diversity of LOPs and
TOPs across the different logics. COPs were intentionally
excluded, as they are typically abstracted away using APs.
For instance, in a 3-operator scenario, a formula that uses
the first and third operators once and the second operator
twice can be represented as the vector v = [1, 2, 1]. These
binned counts are then used to calculate the base 2 Shannon
entropy H(v) = →

∑
i pi log2(pi) where pi is the proportion

of each bin’s count relative to the total. The resulting entropy
H(v) = 1.5 indicates almost maximal entropy, reflecting close
to perfect operator diversity. Perfect diversity is reached in
uniform vectors, with vi > 0.

In order to address both research questions, we leverage
tlparser, a command line tool developed as part of this
work. It automates the parsing of temporal logic formulae,
extraction of statistical metrics, and generation of reporting
visualizations, ensuring reproducibility. It supports all opera-
tors relevant to the studied logics (detailed in the replication
package) and is designed to be easily extensible to accommo-
date additional operators and logics in the future.

For demonstration purposes, consider the Formula 1 below
as running example, being processed by the tlparser in
two steps.

↭ (y ↑ (u = 9) ↓ ↫ (¬y ↔ i < 3)) (1)

First, existing COPs (=, <) in each comparison instance
are counted and then resolved with letter replacements to
transform these instances into parsable APs (i.e. i < 3
becomes i gt 3). In the second step, the formula with resolved
comparison instances is parsed into an AST object which
allows to extract APs (i.e. i gt 3, u eq 9, and y), TOPs (G
and F or ↭ and ↫ respectively), and LOPs (↑, ↔, ↓, and
¬). Consequently, we harvest the statistical data of having
ASTH = 5, APs = 3, COPs = 2, LOPs = 4, and TOPs = 2.
The entropy of the LOPs and TOPs present in Formula 1
therefore yields ↗ 2.585.

A. Answer to RQ1
Fig. 2 shows the distribution of logics used to naturally

formalize the SpaceWire requirements and their mutual trans-
latability. In Subfigure (a), we observe that the majority of the
total n = 89 requirements can naturally be formulated as INV
(32) and LTL (39) expressions, followed by MTLb (15). Only
3 instances utilize the notion of signaling rates, resulting in

chosen in terms of our study, we include the MITL path with
unbounded intervals in our decision tree illustrated in Fig. 1.

Lastly, we note that MTL in general and MTLb in particular
may be defined based on different models of time, which
can be discrete or continuous [36] implying different seman-
tics [14], [37] (i.e., pointwise vs. continuous semantics). While
this did not influence the logics selection process in terms
of our natural formalization, we found pointwise semantics
sufficient for the SpaceWire case, as time constraints required
only natural numbers, with no need for real numbers.

Coping with signal rates and quantities. Last but not
least, certain requirements contain the concept of signal,
predicating over a signaling rate or quantity in each moment
of time. R8 and R9 exemplify this. Consequently, requirements
containing propositions on resetting signals or external action
on the signals are not contained in STL as they sufficiently
formalized in LTL (following our characteristics on natural
formalizations). To this end, we employ Signal Temporal Logic
(STL) [38], [39], where at any time point a real number
denoted by S(t) is assigned, capturing the signal amount in
t as the signal rate. Such requirements are deemed a special
case, yielding a branch in the decision process.

IV. QUANTITATIVE ANALYSIS OF FORMULAE

This section presents the results of a quantitative analysis
of the 89 formulae naturally specifying the 89 requirements
extracted from the SpaceWire document. The analysis was
guided by the following two research questions:

RQ1: What is the distribution of natural logics used
for the transcribed SpaceWire requirements, and can they be
mutually translated?

RQ2: What is the engineering complexity of the natural
formulae for a transcribed SpaceWire requirement and does it
differ among the logics?

The rationale behind RQ1 is twofold. First, by studying the
distribution of the natural formalizations over the respective
logical frameworks, we aim to spot general trends and outliers.
Second, we account for the fact that natural formalizations are
not necessarily the only possible ones. As noted at the end of
Section III-A, a time-bounded requirement is most naturally
formalized in MTLb but can also be translated into LTL. To
that end, we analyze whether a given formalized requirement
can also be translated into another logical framework. We
deem a given formalization as conditionally translatable if cer-
tain assumptions are required due to varying underlying tem-
poral models. As we are only considering translations within
the set of logics obtained during the formalization process, we
speak of mutual translatability. Note that the translatability of
each formalized requirement must be assessed c → 1 times,
where c is the number of distinct logical frameworks used in
the formalizations. Let further n be the number of formalized
requirements, a total of n(c→ 1) translation decisions – each
classified as either yes, no, or conditional – must be made.

The second guiding research question RQ2 examines what
we term the engineering complexity of all natural formaliza-
tions across the logics. This term is used to distinguish our fo-

cus from computational complexity, which is not the subject of
this study. Specifically, we use the syntax structure of logical
formulae as a proxy for engineering complexity. To that end,
we analyze the abstract syntax tree (AST) of each formula,
collecting quantitative metrics characterizing the complexity
of the AST. Metrics include the level of nesting or AST
height (ASTH), counts of logical operators (LOPs), temporal
operators (TOPs), atomic propositions (APs), and comparison
operations (COPs) within the APs if such where appearing
in requirements treated. As we contemplate that engineering
complexity positively correlates with the diversity of operators
present in a given formula, we additionally determine the
Shannon entropy [40] to measure the diversity of LOPs and
TOPs across the different logics. COPs were intentionally
excluded, as they are typically abstracted away using APs.
For instance, in a 3-operator scenario, a formula that uses
the first and third operators once and the second operator
twice can be represented as the vector v = [1, 2, 1]. These
binned counts are then used to calculate the base 2 Shannon
entropy H(v) = →

∑
i pi log2(pi) where pi is the proportion

of each bin’s count relative to the total. The resulting entropy
H(v) = 1.5 indicates almost maximal entropy, reflecting close
to perfect operator diversity. Perfect diversity is reached in
uniform vectors, with vi > 0.

In order to address both research questions, we leverage
tlparser, a command line tool developed as part of this
work. It automates the parsing of temporal logic formulae,
extraction of statistical metrics, and generation of reporting
visualizations, ensuring reproducibility. It supports all opera-
tors relevant to the studied logics (detailed in the replication
package) and is designed to be easily extensible to accommo-
date additional operators and logics in the future.

For demonstration purposes, consider the Formula 1 below
as running example, being processed by the tlparser in
two steps.

↭ (y ↑ (u = 9) ↓ ↫ (¬y ↔ i < 3)) (1)

First, existing COPs (=, <) in each comparison instance
are counted and then resolved with letter replacements to
transform these instances into parsable APs (i.e. i < 3
becomes i gt 3). In the second step, the formula with resolved
comparison instances is parsed into an AST object which
allows to extract APs (i.e. i gt 3, u eq 9, and y), TOPs (G
and F or ↭ and ↫ respectively), and LOPs (↑, ↔, ↓, and
¬). Consequently, we harvest the statistical data of having
ASTH = 5, APs = 3, COPs = 2, LOPs = 4, and TOPs = 2.
The entropy of the LOPs and TOPs present in Formula 1
therefore yields ↗ 2.585.

A. Answer to RQ1
Fig. 2 shows the distribution of logics used to naturally

formalize the SpaceWire requirements and their mutual trans-
latability. In Subfigure (a), we observe that the majority of the
total n = 89 requirements can naturally be formulated as INV
(32) and LTL (39) expressions, followed by MTLb (15). Only
3 instances utilize the notion of signaling rates, resulting in

≈ 2.585

• Example

What is the engineering complexity of the natural formulae for a transcribed
SpaceWire requirement, and does it differ among the logics?

14FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

Results

15

Formalized Requirements
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

16

Formalized Requirements
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

17

Formalized Requirements
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

18

Formalized Requirements
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

19

RQ1: Distribution and Mutual Translatability
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

Part 1 / 2

20

RQ1: Distribution and Mutual Translatability
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

Part 2 / 2

21

Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

RQ2: Engineering Complexity Part 1 / 2

22

Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

RQ2: Engineering Complexity Part 2 / 2

23

Tool Support and Dataset
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

https://zenodo.org/records/14810693

https://zenodo.org/records/14810693

24

Discussion

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

25

Potential Implication
Discussion

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Practitioners
‒ Substantial amount of invariants

‒ Jungle of tool support

‒ Engineering complexity enables fingerprinting

• Researchers
‒ Observed Pareto principle

‒ Specialized unified subsets of existing logics

26

Future Work
Discussion

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Theoretic aspects
‒ Investigating monitorability

‒ Extend to other requirement documents

• Engineering aspects
‒ Extend notion of fingerprint

‒ Interface with other tools and DSLs

‒ Leverage dataset for GPT models

27FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

I. Req. Selection II. Formalization III. Quant. Analysis

Req1: ...
Req2: ...
Req3: ...

extract

Formula1: ...
Formula2: ...
Formula3: ...

build

formalize analyze

Summary

Thank you

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check 28

Happy to chat: roman.boegli@unibe.ch

29

Appendix

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

30

Atomic Propositions
Appendix

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Pragmatic approach
‒ striving finest granularity possible

‒ while maintaining the necessary level of coarseness

• Example
‒ “The gotNull.indication primitive shall be passed to the data link layer, when the first Null is

received without any errors after the receiver has been enabled.”

separating into (firstNullReceived) ∧ (¬ error)
introduces a problem:

if the if the first ‚Null‘ is received with an
error, ‚firstNullReceived‘ would never hold
again as subsequent nulls would no longer be
the first one (i.e. unsatisfiable)

II. Formalization

31

Threats to Validity
Appendix

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

• Internal
‒ Subjectivity in natural formalization

‒ AP granularity

• External
‒ Single case (SpaceWire)

• Construct
‒ Engineering complexity ignores

semantic, algorithm complexity, or
a system’s broader context.

• Explicit declared pragmatism
• Systematic of decision tree

• Applicability of oerall
methodology remains

• Tool support (tlparser)

• Practical value for problem-
oriented approaches

