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Formalizing Software Requirements
Introduction
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Our Study Scope: Temporal Logics
Introduction
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• Jungle of logics

TPTL

LTL
CTL

MTL

PCTL

STL

...MITL
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Our Study Subject: SpaceWire Protocol
Introduction
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• Standard specification for a data handling network (e.g. on spacecrafts)



Methodology
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Overview
Methodology
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I. Requirements Selection

Req1: ....
Req2: ....
Req3: ....

extract

II. Formalization

Formula1: ...
Formula2: ...
Formula3: ...

build

formalize

III. Quantitative Analysis

analyze

discuss implications



• Functional software requirements with notion of temporal behavior.

• Examples

‒ “Null detection shall be enabled whenever the receiver is enabled.”

‒ “The line receiver shall maintain correct operation for differential 
input voltages of up to 600 mV magnitude.”

‒ “Zero or more data characters at the front of a packet shall form a 
destination address.”
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I. Requirement Selection
Methodology
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non-functional

no temporal notion



• Striving for natural formalizations

• Criteria
‒ Solely based on temporal operators present in the requirement.

‒ Used logic is minimal, i.e., just expressive enough to capture the requirement.

‒ Compact formulizations are favored over longer ones.

• Example “Between now  and  𝑛, it should always be 𝐴.”
‒ LTL
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II. Formalization
Methodology

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check

more natural

‒ MITL
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III. Quantitative Analysis – RQ1
Methodology
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‒ MITL

translates

What is the distribution of natural logics used for the transcribed SpaceWire 
requirements, and can they be mutually translated? 

• Motivation
‒ Prevalence, trends, outliers

‒ Framework restrictions, tool support

• Example
‒ LTL
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Methodology
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comparecount

III. Quantitative Analysis – RQ2

variables

• Included metrics
‒ AST height (ASTH)

‒ # atomic propositions (APs)

‒ # comparison operators (COPs)

‒ # logical operators (LOPs)

‒ # temporal operators (TOPs)

‒ Shannon entropy

What is the engineering complexity of the natural formulae for a transcribed 
SpaceWire requirement, and does it differ among the logics?

• Motivation
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Methodology
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III. Quantitative Analysis – RQ2

• Included metrics
‒ ASTH

‒ # APs

‒ # COPs

‒ # LOPs

‒ # TOPs

‒ Shannon entropy

⇒ 5

⇒ { y, u_eq_9, i_gt_3} = 3

⇒ {=, <} = 2

⇒ {∧, ∨, →, ¬} = 4

⇒ {    ,    } = 2

chosen in terms of our study, we include the MITL path with
unbounded intervals in our decision tree illustrated in Fig. 1.

Lastly, we note that MTL in general and MTLb in particular
may be defined based on different models of time, which
can be discrete or continuous [36] implying different seman-
tics [14], [37] (i.e., pointwise vs. continuous semantics). While
this did not influence the logics selection process in terms
of our natural formalization, we found pointwise semantics
sufficient for the SpaceWire case, as time constraints required
only natural numbers, with no need for real numbers.

Coping with signal rates and quantities. Last but not
least, certain requirements contain the concept of signal,
predicating over a signaling rate or quantity in each moment
of time. R8 and R9 exemplify this. Consequently, requirements
containing propositions on resetting signals or external action
on the signals are not contained in STL as they sufficiently
formalized in LTL (following our characteristics on natural
formalizations). To this end, we employ Signal Temporal Logic
(STL) [38], [39], where at any time point a real number
denoted by S(t) is assigned, capturing the signal amount in
t as the signal rate. Such requirements are deemed a special
case, yielding a branch in the decision process.

IV. QUANTITATIVE ANALYSIS OF FORMULAE

This section presents the results of a quantitative analysis
of the 89 formulae naturally specifying the 89 requirements
extracted from the SpaceWire document. The analysis was
guided by the following two research questions:

RQ1: What is the distribution of natural logics used
for the transcribed SpaceWire requirements, and can they be
mutually translated?

RQ2: What is the engineering complexity of the natural
formulae for a transcribed SpaceWire requirement and does it
differ among the logics?

The rationale behind RQ1 is twofold. First, by studying the
distribution of the natural formalizations over the respective
logical frameworks, we aim to spot general trends and outliers.
Second, we account for the fact that natural formalizations are
not necessarily the only possible ones. As noted at the end of
Section III-A, a time-bounded requirement is most naturally
formalized in MTLb but can also be translated into LTL. To
that end, we analyze whether a given formalized requirement
can also be translated into another logical framework. We
deem a given formalization as conditionally translatable if cer-
tain assumptions are required due to varying underlying tem-
poral models. As we are only considering translations within
the set of logics obtained during the formalization process, we
speak of mutual translatability. Note that the translatability of
each formalized requirement must be assessed c → 1 times,
where c is the number of distinct logical frameworks used in
the formalizations. Let further n be the number of formalized
requirements, a total of n(c→ 1) translation decisions – each
classified as either yes, no, or conditional – must be made.

The second guiding research question RQ2 examines what
we term the engineering complexity of all natural formaliza-
tions across the logics. This term is used to distinguish our fo-

cus from computational complexity, which is not the subject of
this study. Specifically, we use the syntax structure of logical
formulae as a proxy for engineering complexity. To that end,
we analyze the abstract syntax tree (AST) of each formula,
collecting quantitative metrics characterizing the complexity
of the AST. Metrics include the level of nesting or AST
height (ASTH), counts of logical operators (LOPs), temporal
operators (TOPs), atomic propositions (APs), and comparison
operations (COPs) within the APs if such where appearing
in requirements treated. As we contemplate that engineering
complexity positively correlates with the diversity of operators
present in a given formula, we additionally determine the
Shannon entropy [40] to measure the diversity of LOPs and
TOPs across the different logics. COPs were intentionally
excluded, as they are typically abstracted away using APs.
For instance, in a 3-operator scenario, a formula that uses
the first and third operators once and the second operator
twice can be represented as the vector v = [1, 2, 1]. These
binned counts are then used to calculate the base 2 Shannon
entropy H(v) = →

∑
i pi log2(pi) where pi is the proportion

of each bin’s count relative to the total. The resulting entropy
H(v) = 1.5 indicates almost maximal entropy, reflecting close
to perfect operator diversity. Perfect diversity is reached in
uniform vectors, with vi > 0.

In order to address both research questions, we leverage
tlparser, a command line tool developed as part of this
work. It automates the parsing of temporal logic formulae,
extraction of statistical metrics, and generation of reporting
visualizations, ensuring reproducibility. It supports all opera-
tors relevant to the studied logics (detailed in the replication
package) and is designed to be easily extensible to accommo-
date additional operators and logics in the future.

For demonstration purposes, consider the Formula 1 below
as running example, being processed by the tlparser in
two steps.

↭ (y ↑ (u = 9) ↓ ↫ (¬y ↔ i < 3)) (1)

First, existing COPs (=, <) in each comparison instance
are counted and then resolved with letter replacements to
transform these instances into parsable APs (i.e. i < 3
becomes i gt 3). In the second step, the formula with resolved
comparison instances is parsed into an AST object which
allows to extract APs (i.e. i gt 3, u eq 9, and y), TOPs (G
and F or ↭ and ↫ respectively), and LOPs (↑, ↔, ↓, and
¬). Consequently, we harvest the statistical data of having
ASTH = 5, APs = 3, COPs = 2, LOPs = 4, and TOPs = 2.
The entropy of the LOPs and TOPs present in Formula 1
therefore yields ↗ 2.585.

A. Answer to RQ1
Fig. 2 shows the distribution of logics used to naturally

formalize the SpaceWire requirements and their mutual trans-
latability. In Subfigure (a), we observe that the majority of the
total n = 89 requirements can naturally be formulated as INV
(32) and LTL (39) expressions, followed by MTLb (15). Only
3 instances utilize the notion of signaling rates, resulting in

chosen in terms of our study, we include the MITL path with
unbounded intervals in our decision tree illustrated in Fig. 1.

Lastly, we note that MTL in general and MTLb in particular
may be defined based on different models of time, which
can be discrete or continuous [36] implying different seman-
tics [14], [37] (i.e., pointwise vs. continuous semantics). While
this did not influence the logics selection process in terms
of our natural formalization, we found pointwise semantics
sufficient for the SpaceWire case, as time constraints required
only natural numbers, with no need for real numbers.

Coping with signal rates and quantities. Last but not
least, certain requirements contain the concept of signal,
predicating over a signaling rate or quantity in each moment
of time. R8 and R9 exemplify this. Consequently, requirements
containing propositions on resetting signals or external action
on the signals are not contained in STL as they sufficiently
formalized in LTL (following our characteristics on natural
formalizations). To this end, we employ Signal Temporal Logic
(STL) [38], [39], where at any time point a real number
denoted by S(t) is assigned, capturing the signal amount in
t as the signal rate. Such requirements are deemed a special
case, yielding a branch in the decision process.

IV. QUANTITATIVE ANALYSIS OF FORMULAE

This section presents the results of a quantitative analysis
of the 89 formulae naturally specifying the 89 requirements
extracted from the SpaceWire document. The analysis was
guided by the following two research questions:

RQ1: What is the distribution of natural logics used
for the transcribed SpaceWire requirements, and can they be
mutually translated?

RQ2: What is the engineering complexity of the natural
formulae for a transcribed SpaceWire requirement and does it
differ among the logics?

The rationale behind RQ1 is twofold. First, by studying the
distribution of the natural formalizations over the respective
logical frameworks, we aim to spot general trends and outliers.
Second, we account for the fact that natural formalizations are
not necessarily the only possible ones. As noted at the end of
Section III-A, a time-bounded requirement is most naturally
formalized in MTLb but can also be translated into LTL. To
that end, we analyze whether a given formalized requirement
can also be translated into another logical framework. We
deem a given formalization as conditionally translatable if cer-
tain assumptions are required due to varying underlying tem-
poral models. As we are only considering translations within
the set of logics obtained during the formalization process, we
speak of mutual translatability. Note that the translatability of
each formalized requirement must be assessed c → 1 times,
where c is the number of distinct logical frameworks used in
the formalizations. Let further n be the number of formalized
requirements, a total of n(c→ 1) translation decisions – each
classified as either yes, no, or conditional – must be made.

The second guiding research question RQ2 examines what
we term the engineering complexity of all natural formaliza-
tions across the logics. This term is used to distinguish our fo-

cus from computational complexity, which is not the subject of
this study. Specifically, we use the syntax structure of logical
formulae as a proxy for engineering complexity. To that end,
we analyze the abstract syntax tree (AST) of each formula,
collecting quantitative metrics characterizing the complexity
of the AST. Metrics include the level of nesting or AST
height (ASTH), counts of logical operators (LOPs), temporal
operators (TOPs), atomic propositions (APs), and comparison
operations (COPs) within the APs if such where appearing
in requirements treated. As we contemplate that engineering
complexity positively correlates with the diversity of operators
present in a given formula, we additionally determine the
Shannon entropy [40] to measure the diversity of LOPs and
TOPs across the different logics. COPs were intentionally
excluded, as they are typically abstracted away using APs.
For instance, in a 3-operator scenario, a formula that uses
the first and third operators once and the second operator
twice can be represented as the vector v = [1, 2, 1]. These
binned counts are then used to calculate the base 2 Shannon
entropy H(v) = →

∑
i pi log2(pi) where pi is the proportion

of each bin’s count relative to the total. The resulting entropy
H(v) = 1.5 indicates almost maximal entropy, reflecting close
to perfect operator diversity. Perfect diversity is reached in
uniform vectors, with vi > 0.

In order to address both research questions, we leverage
tlparser, a command line tool developed as part of this
work. It automates the parsing of temporal logic formulae,
extraction of statistical metrics, and generation of reporting
visualizations, ensuring reproducibility. It supports all opera-
tors relevant to the studied logics (detailed in the replication
package) and is designed to be easily extensible to accommo-
date additional operators and logics in the future.

For demonstration purposes, consider the Formula 1 below
as running example, being processed by the tlparser in
two steps.

↭ (y ↑ (u = 9) ↓ ↫ (¬y ↔ i < 3)) (1)

First, existing COPs (=, <) in each comparison instance
are counted and then resolved with letter replacements to
transform these instances into parsable APs (i.e. i < 3
becomes i gt 3). In the second step, the formula with resolved
comparison instances is parsed into an AST object which
allows to extract APs (i.e. i gt 3, u eq 9, and y), TOPs (G
and F or ↭ and ↫ respectively), and LOPs (↑, ↔, ↓, and
¬). Consequently, we harvest the statistical data of having
ASTH = 5, APs = 3, COPs = 2, LOPs = 4, and TOPs = 2.
The entropy of the LOPs and TOPs present in Formula 1
therefore yields ↗ 2.585.

A. Answer to RQ1
Fig. 2 shows the distribution of logics used to naturally

formalize the SpaceWire requirements and their mutual trans-
latability. In Subfigure (a), we observe that the majority of the
total n = 89 requirements can naturally be formulated as INV
(32) and LTL (39) expressions, followed by MTLb (15). Only
3 instances utilize the notion of signaling rates, resulting in

≈ 2.585 

• Example

What is the engineering complexity of the natural formulae for a transcribed 
SpaceWire requirement, and does it differ among the logics?
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Results
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Formalized Requirements
Results
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Formalized Requirements
Results
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Formalized Requirements
Results

FormaliSE, Apr. 27, 2025R. Bögli et al. Temporal Logics Meet Real-World Software Requirements: A Reality Check



18

Formalized Requirements
Results
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RQ1: Distribution and Mutual Translatability
Results
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Part 1 / 2
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RQ1: Distribution and Mutual Translatability
Results
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Part 2 / 2
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Results
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RQ2: Engineering Complexity Part 1 / 2
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Results
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RQ2: Engineering Complexity Part 2 / 2
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Tool Support and Dataset
Results
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https://zenodo.org/records/14810693

https://zenodo.org/records/14810693
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Discussion
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Potential Implication
Discussion
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• Practitioners
‒ Substantial amount of invariants

‒ Jungle of tool support

‒ Engineering complexity enables fingerprinting

• Researchers
‒ Observed Pareto principle

‒ Specialized unified subsets of existing logics
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Future Work
Discussion
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• Theoretic aspects
‒ Investigating monitorability

‒ Extend to other requirement documents

• Engineering aspects
‒ Extend notion of fingerprint

‒ Interface with other tools and DSLs

‒ Leverage dataset for GPT models
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I. Req. Selection II. Formalization III. Quant. Analysis

Req1: ...
Req2: ...
Req3: ...

extract

Formula1: ...
Formula2: ...
Formula3: ...

build

formalize analyze

Summary
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Happy to chat: roman.boegli@unibe.ch
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Appendix
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Atomic Propositions
Appendix
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• Pragmatic approach
‒ striving finest granularity possible

‒ while maintaining the necessary level of coarseness

• Example
‒ “The gotNull.indication primitive shall be passed to the data link layer, when the first Null is 

received without any errors after the receiver has been enabled.”

separating into (firstNullReceived) ∧ (¬ error) 
introduces a problem:

if the if the first ‚Null‘ is received with an 
error, ‚firstNullReceived‘ would never hold 
again as subsequent nulls would no longer be
the first one (i.e. unsatisfiable) 

II. Formalization
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Threats to Validity
Appendix
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• Internal
‒ Subjectivity in natural formalization

‒ AP granularity

• External
‒ Single case (SpaceWire)

• Construct
‒ Engineering complexity ignores 

semantic, algorithm complexity, or 
a system’s broader context.

• Explicit declared pragmatism
• Systematic of decision tree

• Applicability of oerall 
methodology remains

• Tool support (tlparser)

• Practical value for problem-
oriented approaches


