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Abstract. This paper surveys the different approaches in pattern recog-
nition (PR). After the fundamental idea of PR is stated, a taxonomy
landscape is presented which divides into three families, namely statisti-
cal, structural, and hybrids. The first represents a well-researched topic in
PR which engendered popular and efficient supervised and unsupervised
pattern discovery algorithms. The second family addresses techniques to
find patterns in structurally represented data using graphs that allow
capturing the information of relationships among objects. Thirdly, the
hybridization of the prior two families will be discussed. This includes
the elaboration of transformation methods that allow to embed a graph
into a vector space using graph kernels or graph embedding.
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1 Introduction

PR methods aim to find patterns in data which are hard or even infeasible to
discover for humans. Although there are many different approaches to accomplish
this, it always requires the derivation of a similarity or dissimilarity indicator
among the data objects. Based on this measurement, arrangements can be built
that group similar data objects together and distance dissimilar data objects
from themselves. In classification disciplines, these groups are commonly referred
to as classes, in clustering disciplines clusters.

The science of recognizing patterns in data started to emerge in the late
sixties. A popular paper by Fu (1980) summarized the early developments of PR.
Nowadays, PR has become an established and easily accessible tool which can be
observed in many popular applications. For instance, recognition of faces (Hazim
Barnouti, Sameer Mahmood Al-Dabbagh, & Esam Matti, 2016), creation of
customer behaviour patterns (Koudehi, Rajeh, Farazmand, & Mohamad, 2014),
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detection of cancer cells (Ozdemir & Gunduz-Demir, 2013), or forecasting time
series data (Aghabozorgi, Seyed Shirkhorshidi, & Ying Wah, 2015).

A crucial part of PR is the representation of the underlying information
in order to be processed by a computational algorithm. In general, one distin-
guishes between statistical and structural data. Either case has advantages and
disadvantages regarding the task of emerging patterns in this data. Furthermore,
the applicable algorithmic tool repository differs as well. This survey constitutes
popular PR methods in both data representations and reviews ideas to link them
together.

The remaining part of this survey is organized as follows: Section 2 exam-
ines the statistical representation and the two subcategories of supervised and
unsupervised pattern discovery. Section 3 addresses the structural representa-
tion. Here, a brief introduction to graph theory will be provided, followed by the
elaboration of exact and inexact graph matching algorithms. Section 4 addresses
emerged unification concepts, namely graph kernels and graph embeddings. In
the end, the most important findings will be concluded.

1.1 Pattern Recognition Families

In order to group similar data objects while separating them from dissimilar data
objects, a distance measurement must be established. Large distances indicate
low similarity or high dissimilarity while small distances indicate high similarity
or low dissimilarity. Since these two distance notions are interchangeable, only
the term similarity will be used for the rest of this survey for sake of convenience.

Before the distances can be evaluated, the underlying data must be brought
into a computer-readable representation. There are two types of representations,
namely a statistical representation or a structural representation. Depending on
the data situation, a processable representation is either natively present or
must first be derived by applying certain methods. Besides the representation,
also the available PR tools differ in these two data situations which is why one
distinguishes them in two families. The focus of this survey lies on these two
prominent PR families.

Furthermore, a third type will be addressed which represents the unification
of structural distance derivations and statistical pattern discovery techniques.
Such hybrid forms firstly examine structural relationships of the underlying data
with the goal to perform the actual pattern formation statistically. This can
be reached by means of embedding data objects explicitly or implicitly in a
multidimensional vector space (Bunke & Riesen, 2012).

In the past years, the development of a fourth family named End-To-End
Learning (EEL) has grown in importance. It includes the automated integration
of several subtasks which usually must be conducted separately or manually.
Convolutional Neural Networks represent an implementation of EEL. Feature
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detection and extraction from raw data is one of these subtasks, to name an ex-
ample. In fields where the majority of input data is present in an unstructured
binary form 1, demand such a PR approach. Autonomous driving systems (Bo-
jarski et al., 2016) or speech recognition and interpretation software (Amodei et
al., 2015) deliver ideal use cases for this promising classification solution. How-
ever, this survey will not examine this PR family any further since it represents
a fundamentally different paradigm.

Pattern Recognition

Statistical

Supervised
k-Nearest Neighbour
Decision Trees
Support Vector Machine
Neural Networks

Unsupervised
Iterative Relocation Algorithms
Hierarchical Clustering
Minimum Spanning Tree

Structural

Exact Graph Matching
Tree Search
Clique Detection
Other

Inexact Graph Matching
Graph Edit Distance
Spectral Methods
Heuristics

Hybrids

Graph Kernels
Diffusion
Convolution
Random Walk

Graph Embedding
Topological
Fuzzy Multilevel
Attributed Statistics

Fig. 1. Taxonomy tree outlining the three PR families statistical, structural, and hy-
brids followed by its subcategories. The leaves either express concrete algorithms or
different classes of algorithms.

2 Statistical Representation

When a set of data objects can be described by the same set of features, the
data objects are statistically represented. An example would be a list of people
indicating their age, height, weight, and hair color. This allows to represent each
person as a vector of fixed length in a vector space where the axes correspond
to the attributes.
1 e.g. signal data
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Such a representation has two advantages. Firstly, features can be correlated
in order to derive a new feature, for instance, a body mass index. The possibility
of conducting arithmetic conversions allows to assess the data set more diversely.
This freedom does not directly exist in structural representations. The second
advantage lies in the fact that the pure statistical information itself already serves
as a distance measure since it distinguishes the data objects from each other
natively. Thus, separating tall and small people can be performed effortlessly.

Fukunaga (1990) broadly formulates statistical PR as a density estimation
problem of objects in a high-dimensional space and the question of how to par-
tition this space into regions so that they correspond to observed categories. In
general, such pattern discovery algorithms are either based on supervised learn-
ing or unsupervised learning (Duda, Hart, & Stork, 2001). Both categories are
elaborated in this chapter.

2.1 Supervised

In supervised PR techniques, the classification model or classifier is derived from
a pre-labelled data set. This data set is commonly referred to as training set since
it trains the classifier in order to separate the data objects in an optimal way
based on their known class memberships. The goal is to create a model that
eventually will classify new, unlabelled data objects likewise. Such a model acts
as a discriminant function which takes the features of a data object as input and
outputs the class allocation (Fukunaga, 1990). The training set calibrated this
function.

This rather trivial approach of assigning new data objects to pre-existing
classes based on the data object that are already in these classes can be ap-
plied to many ordinary problems. Creditworthiness analysis serves as an exam-
ple (Turkson, Baagyere, & Wenya, 2016). In this example, the authors illustrate
different techniques to show whether or not a customer pays back its loan in
future by means of feature such as age, balance limit, and payment history.

The rest of this chapter surveys three prominent supervised classification
techniques, namely the k-Nearest-Neighbour, decision trees, and Support Vector
Machines. These fundamental techniques have gained importance in PR since
their generalization is often used in more sophisticated PR algorithms.

k-Nearest-Neighbour (kNN) is a prominent technique to solve classification
problems due to its simplicity (Webb & Copsey, 2011). Here, an unclassified
data object receives its classification based on its location in the vector space.
The data objects from the training set serve as orientation points. Using the
Euclidean Distance, the k closest orientation points are determined. “The number
of neighbours k is selected as a trade-off between choosing a value large enough



Statistical vs. Structural Pattern Recognition 5

to reduce the sensitivity to noise, and choosing a value small enough that the
neighbourhood does not extend to the domain of other classes” (Webb & Copsey,
2011, p. 154).

The kNN classifier poses a challenge when the identified k neighbours be-
longing to k or k−n different classes where n < k−1. Such a tie can be resolved
by either rejecting the classification decision or making a random choice. Dudani
(1976) introduces a version of the kNN, which allows to weight closer neighbours
more heavily in order to make a more veridical classification. Fuzzy kNN is an-
other way to address this problem. Here, k class memberships are proportionally
represented in sample vectors (Keller, Gray, & Givens, 1985).

Decision trees represent another form of supervised classification. A tree is de-
rived from the training set where each node represents a feature and each edge a
decision function. The features that are most salient are preferably represented
first in the decision tree (Jain, Duin, & Jianchang Mao, 2000). Hunt’s algo-
rithm serves as basis for multiple tree construction algorithms, such as CART
(Breiman, Friedman, Olshen, & Stone, 1984), C4.5 (Quinlan, 1993), or ID3
(Quinlan, 1986). Once the tree has been constructed, unclassified data objects
can be fed into it. After they traversed through the appropriate nodes, they
eventually end up in a leaf and therewith in class.

According to Jain et al. (2000), there are two advantages of decision trees.
One is its low computational complexity. Another beneficial property is the inter-
pretation of decision rules based on the individual features. On the other hand,
the authors mention the risk of obtaining over-trained or over-fitted trees as a
disadvantage. The better a decision tree classifies the data object in the train-
ing set, the higher the risk of losing generality and gaining specificity. However,
this risk can be diminished by applying pruning (Gelfand, Ravishankar, & Delp,
1991), a technique to remove very specific sections of the tree in order to remain
general.

Breiman (2001) introduced the Random Forest classification approach. By
randomly choosing data object from the training set, several new data sets of
equal size are created. This process is also known as bootstrap aggregation or
bagging (Breiman, 1996). Each of this bootstrapped data set is used to construct
a decision tree. New data object are then fed into all of these trees resulting in
a proportional class assignments.

Support Vector Machines (SVMs) constitutes a third widely used classifi-
cation technique due to its versatile implementation potential. The concept was
initially introduced by Vapnik (1982). Here, data objects are projected into a
higher dimensional feature space in order to find a hyperplane that separates
the patterns in an optimal way from each other (Webb & Copsey, 2011). The
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hyperplane serves as a linear discriminant function which allows to classify new
data objects accordingly in this new vector space. Byun and Lee (2002, p. 214)
comprehensively exemplify this as follows: “Such an optimal hyperplane is the
one with the maximum margin of separation between the two classes, where the
margin is the sum of the distances from the hyperplane to the closest data points
of each of the two classes. These closest data points are called Support Vectors
(SVs)”.

SVMs are especially useful when the underlying data objects cannot directly
be classified by linear separation function, which is usually the case in real-
world problems. Using non-linear transformation functions, the data objects are
mapped into the new vector space. Thus, the data landscape is bent which
eventually allows separating patterns linearly again. This process is known as
kernalization or the kernel trick, since the functions used to perform the trans-
formation from the original vector space to the new higher dimensional vector
space are called kernel functions (Webb & Copsey, 2011).

Although SVMs are designed for binary classification problems, they can
be applied to multi-class problems using one of two techniques. One technique
suggests a pairwise comparison of one class with all other classes (Trafalis &
Oladunni, 2005). Another technique compares the data objects of one class in
the training set to a virtual class representing the data object of all remaining
classes (Zhao, Liu, & Xia, 2000).

Byun and Lee mention disadvantages that arise in SVMs applications. This
includes the difficult choice of the optimal kernel function, the high computa-
tional complexity, and the right selection of the SVs. The latter is especially
important when the training set includes noise or expresses non-separable pat-
terns.

Other techniques in supervised classification includeNeural Networks andNaive
Bayes algorithms. Neural Networks consists of several linear discrimination func-
tions, also known as perceptrons, chained together in order to form a multi-layer
network. The training set is then used to orchestrate the weights in the individ-
ual discrimination functions which simultaneously trains the classification model
itself (Duda et al., 2001).

Naive Bayes algorithms classify new data objects based on the likelihoods
observed in the training set (Zhang, 2004). This probabilistic classifier model,
however, assumes complete independence among the features. Although this is
often not the case in reality, the results are competitive. Common applications
of it can be found in fields where high dimensional data sets are present which
is usually the case in text classification problems (Aggarwal & Zhai, 2012).
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2.2 Unsupervised

In unsupervised PR techniques, no pre-labelled data objects exist from which a
model could be derived. Patterns are purely emerged by comparing the values
that define a data object (Webb & Copsey, 2011). There are many applica-
tion scenarios in practice, such as clustering clients into different personas or
grouping documents. The latter may result in map where informal and formal
documents appear in different clusters due to sentence length, writing style, or
the (in)existence of document building blocks such as tables or cross references.

Other than in supervised problems, where training data supervises the cre-
ation of the classifier, clusters are purely emerged by examining each data ob-
jects in the context of the completeness of the entire data set. “A good clustering
method will produce high superiority clusters with high intra-class similarity and
low inter-class similarity” (Mann & Kaur, 2013, p. 42). In general, the number
of clusters obtained is not known in advance. However, some methods allow to
specify the desired amount of cluster in advance or afterwards.

Madhulatha (2012) divides the algorithms used in clustering problems into
different classes. In Partitioning Clustering (PC), clusters are evolved by slicing
the data set into different regions or partitions. Hierarchical Clustering (HC)
creates clusters by either dividing or aggregating the data objects into smaller
or bigger subsets respectively. The result of HC algorithms are usually hard clus-
ters, meaning that each data object only belongs to one cluster. PC algorithms,
however, allow so-called fuzzy clustering (Äyrämö & Kärkkäinen, 2006) by ex-
pressing the cluster assignments for data object in probabilities. Other classes are
density-based (Kriegel, Kröger, Sander, & Zimek, 2011) and grid-based (Amini,
Wah, Saybani, & Yazdi, 2011) algorithms. Together with PC algorithms, they
belong into the group of non-hierarchical clustering methods. These two classes,
however, will not be revisited in further progress of this survey.

Iterative relocation algorithms (IRAs) belong to the most popular tech-
niques used to establish clusters. IRAs partition the data landscape into regions.
These regions represent the clusters. A user-defined number of points (k) are
randomly determined in the data’s vector space representing the centres of the
initial clusters. Afterwards, all the data objects become assigned to their nearest
cluster directly followed by a recalculations of the cluster centres. Consequently,
the centres are relocated. This process is repeated until a stopping criteria oc-
curs, such as the convergence to a certain error margin threshold or a almost
stationary cluster center (Webb & Copsey, 2011).

The k-Means algorithm represents a famous implementation of an IRA due
to its computational simplicity (Theodoridis & Koutroumbas, 2009). It outputs
hard cluster allocations, meaning that every data object is associated with only
one class. The cluster centres are calculated using the mean of all distances
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between the data objects belonging to this cluster and the cluster’s center point.
This reasons its sensitivity to outliers and noise (Theodoridis & Koutroumbas,
2009).

Meanwhile, there are several optimized versions of k-Means developed. Zhang
(2000) introduces the k-Harmonic-Means algorithms which can be used before-
hand in order to determine better initial cluster centres. Although the speed of
k-Means is already seen as an advantage, Na, Xumin, and Yong (2010) further
optimized the efficiency of calculating the distances by caching some information
during the process.

Another IRA implementation is called k-Medoids. As opposed to its pre-
cursor k-Means, k-Medoids is robust to outliers and noise due to the fact of
choosing a specific data object as cluster centre (Theodoridis & Koutroumbas,
2009). Therefore also discrete values can be processed which is not the case in
k-Means since the mean values could be out of domain. On the other hand, the
determination of the medoids is known to be computationally more demand-
ing compared to averaging. In addition, the centres do not have any statistical
meaning (Theodoridis & Koutroumbas, 2009).

For large data sets, Kaufman and Rousseeuw (2005) propose the Clustering
for Large Applications (CLARA) algorithm which builds on samplewise cluster-
ing. In 2002, Ng and Han introduced another solution called Clustering Large
Applications based on Randomized Search (CLARANS). Here, the computational
effort is further reduced using randomized search.

Hierarchical Clustering (HC) is another popular class of clustering algo-
rithms. It is extended by two subclasses, namely agglomerative and divisive
clustering. In agglomerative algorithms 2, every data object forms its own clus-
ter at the beginning. Then, the clusters are gradually combined until the entire
data set represents one single cluster. Hence, it is also referred to as bottom-up
approach.

Divisive algorithms 3 make use of the inverted process. Here, one starts with
one cluster encompassing all data objects which eventually are divided into more
granular clusters. Thus, one refers to it as top-down approach.

The result of both approaches can be visualized by means of a tree-like dia-
gram called dendrogram. The leaves of a dendrogram correspond to the individual
data objects. Each node level represents one iteration of the HC algorithm. This
allows a user-defined level of granularity regarding the number of clusters which
is seen as an advantage (Mann & Kaur, 2013). The shape of the dendrogram,
however, looks significantly different depending on the distance linkage method
used.
2 also known as agglomerative nesting (AGNES)
3 also known as devise analysis (DIANA)
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In general, the distance between two clusters can be denoted by the pairwise
distance of the data objects in two clusters (Kassambara, 2017). Consequently,
single linkage refers to the minimum, complete linkage to the maximum, and
average linkage to the average distance between the data objects of two clusters.
Single linkage produces stepwise clusters and complete linkage produces more
compact clusters with rather high-level grouping.

On the other hand, Mann and Kaur (2013) state that most HC algorithms
do not revise their result in order to find optimizations which they see as a dis-
advantage. Finding an optimal cut point in the hierarchy tree, which eventually
defines the number of clusters, can also be challenging.

Minimum Spanning Tree (MST) inspires a third class of algorithms to dis-
cover clusters. Here, the data objects are represented by means of a graph,
where the distances represent the weights of the edges. A tree has to be found
that touches or spans over all vertices without circuits (Gower & Ross, 1969).
The tree with the lowest total weight is called MST. Kruskal (1956) and Prim
(1957) proposed popular algorithms to accomplish this.

The edges of the MST are sorted in descending order according to their
weights. This allows to start clustering the data by successively removing the
heaviest edge from this stack (Grygorash, Zhou, & Jorgensen, 2006). Thanks
to the antecedent sorting, the MST is divided into subgraphs with maximized
inter-distance. Each subgraph corresponds to a new cluster.

Wang, Wang, and Mitchell Wilkes (2009) introduce an approach to optimize
the construction of a MST in terms of computational complexity by applying a
divide and conquer strategy. Päivinen (2005) presents an algorithm which aims
to build a scale-free MST. In scale-free graphs, the vertices degree distribution is
subject to a power-law (Newman, 2018). In other words, the majority of vertices
are adjacent to a few highly connected ones what qualifies them as potential
cluster centres.

3 Structural Representation

More sophisticated data situations such as network systems, cannot directly be
embodied in a statistical representation. Instead, the data objects are primarily
represented in a structural manner to determine a similarity index. Fu (1974)
conducted fundamental research in this topic. In order to accomplish this, the
underlying data is encoded by means of a graph. This graph describes the data’s
associated attributes and its relations to each other which allows to preserve the
structural information for the pattern discovery process.

Riesen (2015) declares the two major disadvantages which are present in sta-
tistical PR methods. One is the fixed length of all vectors based on the predefined
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set of attributes. The other lies in the missing possibility to describe relations
between the individual vectors. Structural PR overcomes both of these limita-
tions, however, at cost of higher computational complexity. The reason for this
lies in the fact that common parts must be identified under the consideration of
all their subgraphs (Riesen, Jiang, & Bunke, 2010).

Practical examples of such a graph-based approach can be found in pictorial
PR problems. Technically, images can be represented in a vector space which
encodes the color and the brightness of each pixel. This would allow to perform
pattern discovery using the tools shown in Section 2. Such a representation,
however, would be too detailed for further processing (Pavlidis, 1977). In order
to describe an image structurally, one could use the segmentation boundaries
which evolve after partitioning the pixel landscape into maximised regions that
are consistent in color and light intensity.

Though the field of structural PR can also be divided into the two categories
supervised and unsupervised, this survey focuses on the matching process of
subgraphs since it forms an essential step in order to derive a similarity measure
between graphs. After a brief introduction into graph theory, exact and inexact
graph matching algorithms are discussed.

3.1 Graph Theory

Graph Theory (GT) closely relates to the mathematical subfield of Operational
Research (OR). OR strives to model problems in order to find suitable answers
among many possibilities using different techniques. This includes prominent
disciplines such as linear, non-linear, dynamic, or network programming (Taha,
2017). What they generally have in common is that solutions are found algorith-
mically rather than by means of closed formulas. Especially network program-
ming is important as it frames the fundamental concept of structural PR. Hence,
this survey provides a condensed introduction to graph theory.

The explanations in this paragraph are sourced from Rosen (2019). A graph
G(V,E) consists of V vertices 4 and E edges. The edges are associated with
either one or more vertices. When an edges starts and ends at the same vertex,
it represents a loop. In directed graphs, an edge (u, v) starts at vertex u and
ends at v. When the order is ignored, the graph is considered undirected. One
can traverse a graph using a sequence of edges. The traversed distance within
a graph is commonly referred to as path. The degree of a vertex describes the
number of edges incident with it. Neglecting loops, this measure expresses how
well a vertex is connected in a graph. In weighted graphs the edges are associated
with values representing its weight. When the vertices of two different sets are
solely connected with vertices of the other set, one speaks of a bipartite graph.

4 Also referred to as nodes
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When vertices and edges are associated with additional information, one speaks
of an Attributed Relational Graph (ARG).

The field of OR provides interesting problems for which a decent answer can
be found using GT and the tools that come with it. A social media network,
for instance, could be modelled as an undirected graph. Vertices represent the
persons while the edges identify the friendship relations among them. This allows
to find answers to questions such as how well an individual is connected or
through how many friends two strangers could know each other. The graph
is considered an ARG, for instance, when person’s demographic information is
associated to each vertex.

Bitcoin and the underlying public blockchain ledger on the other hand serves
as an example for a directed graph. Here the addresses can be seen as vertices
while the transactions among them define the edges. Additionally the edges could
be associated by the amount of Bitcoins transferred as well as the transaction’s
time stamp.

3.2 Graph Matching

Graph Matching (GM) algorithms aim to compute a value that expresses how
similar two graphs are (Riesen et al., 2010). When two graphs are structurally
identical, they are isomorphic to each other. An isomorphism can also be seen
as a function that is able to distinctively map two objects using a bijection that
preserves adjacencies. “In other words, when two simple graphs are isomorphic,
there is a one-to-one correspondence between vertices of the two graphs that
preserves the adjacency relationship” (Rosen, 2019, p. 706).

Subgraph isomorphism detection describes the task of finding identical parts
of a graph G in a graph H (Bunke & Messmer, 1997). To transform this binary
distinction into a more meaningful expression, one compares several parts of two
graphs with each other. This allows the derivation of a similarity measure.

Finding isomorphic subgraphs is deemed an NP-complete problem (Larrosa
& Valiente, 2002). This means that so far no algorithm exists that is able to
solve this problem in polynomial time complexity. However, a given solution can
be verified in polynomial time (Garey & Johnson, 2009).

Riesen et al. (2010) outline two paradigms in GM. One is the exact GM which
identifies strict accordance between two graphs. The other approach accepts
some level of inaccuracy, hence it is referred to as inexact GM. Many popular
approaches in both strategies build on tree search algorithms (Conte, Foggia,
Sansone, & Vento, 2004).

Exact GM algorithms assess the similarity of two graphs based on the number
of identical subgraphs. The depth-first tree search algorithm represents a funda-
mental building block in this field (Messmer & Bunke, 1999). It aims to traverse
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through a graph as far as possible until either a leaf node is reached or the
trail points to an already visited vertex. Then the algorithm backtracks upwards
along the tree until the next vertex which allows it to follow an unvisited path
downwards again.

Ullmann’s Algorithm is an extension of this basic version, proposed by Ull-
mann in 1976. Here the computational effort is reduced by the so-called Apriori
method which eliminates the rest of an unvisited path after a mismatch oc-
curred. Ullmann names this refinement process, however, the term pruning is
more common nowadays. Although pruning leads to an increase in efficiency,
it may prevent finding isomorphic subgraphs which are located in the depth of
the tree. Čibej and Mihelič (2015) proposed further improvements of Ullmann’s
Algorithm by means of neighbourhood filtering, a redesigned pruning process,
and the application of heuristics.

Another exact matching technique is based on clique detection. A clique de-
scribes a subset of vertices C of graph G in which every pair of vertices in C is
adjacent in G. The subgraph C represents a complete graph. More interesting
are maximum cliques. A clique is maximized when there is no other complete
subgraph in G that contains C (Bron & Kerbosch, 1973). Since the maximum
cliques are insightful descriptive characteristics of a graph, it serves well as a com-
parison feature to determine distances. Larrosa and Valiente (2002) embedded
the clique detection task into the more general definition of constraint satisfac-
tion problems. This induced them to use heuristics as it is often the case in OR
problems.

The detection of Maximum Common Induced Subgraphs (MCIS) also serves
as a tool for GM. Looking at two graphs G and T , a MCIS describes a sub-
graph of G or T that is present in both of them and maximized in the number
of vertices. Vismara and Valery (2008) introduce a slightly different matching
approach by drawing attention to Maximum Common Connected Induced Sub-
graphs (MCCIS).

Messmer and Bunke (1999) proposed another technique of exact GM which
makes use of a decision tree that is preprocessed from a graph library beforehand.
This allows to match a new graph in a quadratic time regardless of the library’s
size. The same authors frist proposed an inexact version of this technique in 1998.
Nauty (McKay, 1981) represents also a technique that is not based on tree search
algorithms but group theory. “The algorithm deals only with the isomorphism
problem, and is regarded by many authors as the fastest isomorphism algorithm
available today.” (Conte et al., 2004, p. 271).

Inexact GM algorithms allow to detect more rough patterns in graphs since
they accept a certain level of errors in the comparison process of subgraphs.
Hence they are also referred to as error-tolerant GM algorithms (Riesen et al.,
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2010). The development of a less rigid approach was motivated by the high
computational effort which is needed to find exact matches. Other than in exact
GM algorithms, the edge-preservation requirement is not mandatory, however,
it influences a penalty score. Inexact GM algorithms try to minimize this score
(Conte et al., 2004).

One technique is based on the graph edit distance (GED). This distance
measure, developed by Sanfeliu and Fu (1983), counts the minimal number of
operations required to transform a graph G into a graph T . Inserting, deleting,
or substituting vertices and edges are considered as edit operations (Riesen et
al., 2010). Tsai and Fu (1979) introduced an algorithm which makes use of the
GED in order to find isomorphic subgraphs by means of substituting vertices
and edges. Since the other edit operations insertion and deletion are omitted in
this algorithm, the candidate graphs must be structurally identical (Conte et al.,
2004).

Relaxation labelling is another inexact GM technique. Here, the discrete
graph problem is transformed into a statistical problem. This allows to find
solutions with the help of continuous optimization. This inherits two advan-
tages, namely a greater variety of suitable algorithms to choose from and the
computational complexity is decreased to polynomial-time (Conte et al., 2004).

Another approach that allows to process GM in polynomial time is based
on spectral methods. These methods describe a graph by means of its eigenvalue
and eigenvector. When the adjacency matrices of two graphs indicate the same
eigenvalues and eigenvectors, they are isomorphic (Conte et al., 2004). However,
this rule does not hold for the opposite. Xu and King (2001) proposed a method
which makes use of this property in combination with continuous optimization.

The application of heuristics is also a tool used in inexact GM. Suganthan
(2002) recognizes patterns in an ARG by applying a genetic algorithm (GA).
GAs are based on heuristics and inspired of Darwin’s evolutionary theory. At the
beginning, a set of possible solutions is randomly generated. The best solutions
in this set are used to breed a new set of solutions with the hope of bequeathing
the superior parts of the parent solutions to the new generation.

4 Hybrids

As shown in Section 2, the statistical approach in PR offers a well-elaborated set
of tools which allows to find patterns efficiently and with good results. Unfor-
tunately, the required data representation is often not derivable from real-world
problems without losing a significant amount of information. Structural PR,
described in Section 3, overcomes this limitation using a graph-based represen-
tation. This enables to incorporate the relations that data objects share among
each other. However, there exists a smaller variety of tools to find patterns in
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graphs. The ones that exist are limited in arithmetic operations and often com-
putationally expensive.

This reasons the motivation behind the attempts of merging the two PR
families. One of the first papers introducing this idea was published by Fu (1986).
The general strategy includes the transformation of a graph into a vector space.
This transformation process is also called embedding. Embedding in this context
refers to the mapping of complex representation into a simple representation with
minimized loss of information. There are two different approaches to accomplish
such a projection of a graph into a vector space. One relies on graph kernels, the
other on graph embeddings (Bunke & Riesen, 2012).

4.1 Graph Kernels

Graph kernels are kernel functions that allow to map or embed a graph into a
higher-dimensional vector space (Bunke & Riesen, 2012). This vector space, how-
ever, remains typically unknown which is why one names this process implicit
embedding. Formally, a graph kernel is a function K that expresses the similar-
ity of two graphs gi and gj in form of scalar or dot product K(gi, gj) = x ∈ R
such that x = 〈ϕ(gi), ϕ(gj)〉. The function ϕ is an unknown embedding func-
tion used to establish a mapping from a graph domain G into a vector space
Rn, formally ϕ : G → Rn. In other words, graph kernels allow to describe a
structurally represented data set using a matrix of dot products (Shawe-Taylor
& Cristianini, 2004). This extends the set of applicable PR tools, although the
variety of vectorial operations is still limited when embedding implicitly (Conte
et al., 2013).

Classification or clustering algorithms that accept such matrices as input are
generally called kernel machines. As stated in Section 2.1, SVMs are also deemed
as kernel machines with the difference that the mapping is performed from one
vector space to another vector space. Thus, SVMs are not directly applicable in
a graph scenario. Graph kernels, on the other hand, first compute a similarity
measure in the graph space and then embed the object implicitly in a vector
space 5 (Riesen, 2015). This allows to convert the graph-based PR problem from
a discrete to a continuous problem which enables the application of statistical
PR tools such as SVMs, IRAs, or kNN. “Hence, by means of kernel functions
one can benefit from both the high representational power of graphs and the
large repository of algorithmic tools available for feature vector representations
of objects” (Bunke & Riesen, 2007, p. 21).

Although there are many functions to compute a similarity measure between
two structurally represented objects (see Section 3.2), not every function is con-
sidered to be a kernel function. Kernel function must satisfy the condition that
5 This new vector space is a Hilbert space which extends the model of a linear vector
space with further properties (Muscat, 2014).



Statistical vs. Structural Pattern Recognition 15

the resulting matrix is symmetric and positive semi-definite (Shawe-Taylor &
Cristianini, 2004). The rest of this chapter surveys three popular classes of graph
kernels which generally describe a kernel’s algorithmic strategy.

Diffusion Kernels represent a class of kernels introduced by Kondor and Laf-
ferty (2002). They allow to use any similarity measure applicable to graphs in
order to construct a similarity matrix (Bunke & Riesen, 2012). Given the fact
that the used similarity measure is symmetric, diffusion kernels will transform
this matrix into a valid kernel matrix (Neuhaus & Bunke, 2007).

Convolution Kernels describe another class introduced by Haussler (1999).
Here, the similarity measure of two graphs is calculated by decomposing the
graphs into smaller parts which implies less computational complexity (Neuhaus
& Bunke, 2007). “Given the similarities between the simpler parts of the under-
lying objects, a convolution operation is applied in order to turn them into a
kernel function” Bunke and Riesen, 2012, p. 817.

Random Walk Kernels are based on the number of matching paths or walks
which were randomly traced in the candidate graphs (Neuhaus & Bunke, 2007).
Gärtner, Flach, and Wrobel (2003) showed that this number can be derived
from two graphs using the direct product. Since this supersedes the need for
performing the individual walks, random walks of arbitrary length can be used
(Bunke & Riesen, 2012).

4.2 Graph Embedding

In general, graph embedding divides into two classes, namely explicit or implicit
embedding (Conte et al., 2013). However, this chapter only addresses the explicit
embedding since the implicit one is commonly invoked using graph kernels which
was discussed in Section 4.1.

Explicit embedding describes the act of mapping a graph into a vector space
using an known embedding function ϕ : G 7→ Rn. The structural information
of a graph gi is translated into a vector ϕ(gi) 7→ (x1, ..., xn) ∈ Rn where each
dimension or axis corresponds to an explicitly defined feature (Conte et al.,
2013).

A trivial example of an explicit graph embedding would be a vector space
where one axis represents the number of vertices and the other one the number of
edges. However, this strategy may not be very insightful in regard of discovering
patterns. Riesen and Bunke (2009) show a more sophisticated approach that
involves a set of comparative graphs acting as prototypes. Using the GED as a
similarity measure, all candidate graphs are successively compared with these
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prototypes resulting in a new vector of fixed length. Hence, each dimension of
the vector space embodies the graph similarity to a specific prototype.

Other than the embedding established using graph kernels, explicit embed-
ding invokes no limitations regarding vectorial mathematics (Fu & Ma, 2013)
which reasons its attractiveness. The remaining rest of this chapter explores
further explicit embedding techniques.

Topological embedding transfers a graph into a vectorial representation us-
ing a lexicon which contains prominent graph topologies (Sidère, Héroux, &
Ramel, 2009). The structural patterns are described by the number of how many
times certain criteria are observable in the graph. The frequency of the lexicon’s
topologies present in the graph would be a simple criterion. A more sophisticated
criterion, for instance, would be vertices of degree two connected to vertices of
degree three.

Fuzzy Multilevel Graph Embedding (FMGE) represents another tech-
nique of explicit graph embedding, introduced by Luqman, Ramel, Lladós, and
Brouard (2013). Here, an ARG is described from three different perspectives,
namely holistically, structurally, and elementary with the goal of minimizing in-
formation loss (Conte et al., 2013). FMGE allows to transform this information
into a low-dimensional numeric vector space using fuzzy logic (Luqman et al.,
2013).

Spectral embedding describes a technique in which the graph adjacency matrix
is used to calculate an eigenvector in order to derive several spectral properties
represented as vectors (Luo, C. Wilson, & Hancock, 2003). The authors illus-
trate the embedding of these vectors using principal or independent components
analysis and multidimensional scaling.

Other methods include, for instance, the technique proposed by Torsello and
Hancock (2007) where a set of trees is embedded by means of a super-tree.
This super-tree is constructed based on this set with the goal to minimize the
total edit distance. The axes in the vector space correspond to the nodes of this
super-tree. Gibert, Valveny, and Bunke (2012) introduce attributed statistics
based embedding which conveys a graph with continuous vertex attributes in a
vector space using a set of simple subgraphs as representatives.

5 Conclusion

The data objects in statistical PR problems are described by means of a fixed
number of features which is why they can directly be represented in a multi-
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dimensional vector space. Applicable pattern discovery algorithms in such a set-
ting generally divide into the two classes supervised and unsupervised. While the
classification model in supervised PR is learned using a pre-labelled training data
set, unsupervised algorithms perform the data segmentation using the informa-
tion among the different data objects. This survey reviewed popular algorithms
in both classes.

A structural data representation by means of graphs allows to capture the
relational information among the individual data objects. This outperforms the
statistical PR in terms of representational power but at costs of higher compu-
tational complexity and a reduced repository of algorithmic pattern discovery
tools. After stating some fundamental theoretic aspects regarding graphs, two
classes of graph matching algorithms were reviewed, namely exact and inexact.
The latter ones tolerate certain errors in the matching process and hence are
less computationally expensive.

Unification strategies of these two prior PR families are motivated by the
desire to benefit from both, the representational power of graphs and the access
to a larger set of efficient pattern discovery algorithms. Such hybrid solutions
are addressed as a third PR family in this survey. They transfer a graph either
explicitly using graph embedding or implicitly using graph kernels into a vector
space.

A totally different paradigm in the field of PR is introduced by End-To-End
Learning. Although only marginally discussed by this survey, the development
of such deep learning algorithms gains in importance since they automate sev-
eral subtasks in PR beginning with the feature detection. Hence, End-To-End
Learning seems to deliver promising advantages in application areas where the
majority of data is captured in unstructured binary files.
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